国产av不卡一区二区_欧美xxxx做受欧美_成年人看的毛片_亚洲第一天堂在线观看_亚洲午夜精品久久久中文影院av_8x8ⅹ国产精品一区二区二区_久久精品国产sm调教网站演员_亚洲av综合色区无码一二三区_成人免费激情视频_国产九九九视频

Global EditionASIA 中文雙語Fran?ais
World
Home / World / Europe

AI used to fight drug resistance

By ANGUS McNEICE in London | China Daily Global | Updated: 2019-08-14 09:12
Share
Share - WeChat
[Photo/IC]

Artificial intelligence targets antibiotic resistance in animals and humans

Scientists in the United Kingdom and China have announced plans to use artificial intelligence on chicken farms in order to combat the problem of antibiotic resistance in both farm animals and humans.

The new initiative will use machine learning to find ways to track and prevent disease on poultry farms, reducing the need for antibiotic treatment in chickens and therefore lowering the risk of antibiotic-resistant bacteria transferring to people.

The research will be led by animal health experts from the University of Nottingham and Nimrod Veterinary Products in the UK as well as two Chinese partners-New Hope Liuhe in Chengdu and the China National Center for Food Safety Risk Assessment.

"Antibiotic resistance is a worldwide problem and it's getting worse and worse. Some of these superbugs are resistant to everything, we don't know how to treat them," University of Nottingham veterinary professor Tania Dottorini told China Daily. "On farms, superbugs are not confined to animals, they spread to humans and to the environment, it's an exponential spread. If we don't understand how to stop this, it's going to be really bad."

The new project is part of Farmwatch, which is a UK-China agricultural initiative supported by 1.5 million pounds ($1.8 million) in joint funding from British agency Innovate UK and China's Ministry of Science and Technology.

Around 700,000 deaths a year stem from antibiotic resistance, according to a report commissioned by the UK government. If left unchecked, drug resistance could lead to 10 million deaths a year by 2050, which is more than the number of people who now die from cancer annually.

Farms, where otherwise healthy animals are given medication as a preventative measure, act as breeding grounds for anti-bioticresistant strains of bacteria that transfer to people.

Antibiotics work by disrupting function in certain parts of a bacterial cell. Bacteria become resistant to antibiotics through genetic mutations that alter those areas of the cell, meaning the medication can no longer target them.

The more a strain of bacteria is exposed to an antibiotic, the more likely it is to become resistant. Large numbers of people and animals are given antibiotics when they don't need them, so reducing unnecessary consumption is crucial in the fight against so-called superbugs.

A study by the University of Calgary in Canada found that restricting the use of antibiotics in healthy farm animals can reduce the prevalence of antibiotic resistance by up to 39 percent.

The researchers from Nottingham and China will take thousands of samples from the animals, humans, and the environment at nine farms across three Chinese provinces during three years. They will also measure other variables, such as humidity and temperature.

"What is causing infection? What is causing the insurgency of antibiotic resistance? To find out, we have to combine information from different sources," said Dottorini. "We are like detectives trying to investigate where the problems are, so we can reconstruct the chain of events."

Scientists will then use big data and AI software to analyze the information, and search for patterns and clues to determine where disease outbreaks and instances of resistance arise. This information will help farmers take preventative measures against future outbreaks, lessening the need for antibiotic use.

"When you have a large-scale data set, the human mind can't cope with that, it's too complex," Dottorini said of machine learning. "We need something that is able to understand the relationship across a big amount of information."

Dottorini said that, if successful, these methods should be easily transferable to other farm studies in China and abroad.

 

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1994 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
中文字幕亚洲欧美| 精品一区二区三区免费看| 最新国产在线拍揄自揄视频| 国产精品视频二区三区| 校园春色欧美| 最新亚洲人成网站在线观看| 国产一级揄自揄精品视频| 99久久99热这里只有精品 | 久久国内精品| 成人黄色免费观看| gogo亚洲高清大胆美女人体| 蜜桃视频在线观看播放| jizz一区二区三区| 婷婷色在线资源| 在线观看电影av| 午夜av在线免费观看| av大全在线| 欧美videos另类精品| 在线观看午夜av| 国内在线视频| av手机在线观看| 黄色aa久久| jizz内谢中国亚洲jizz| 欧美大胆性生话| 亚洲视频精品在线观看| 污视频网站在线| 男生女生差差差的视频在线观看| 欧美大片aaa| 国产高清一级毛片在线不卡| 川上优的av在线一区二区| h网站在线免费观看| av在线之家电影网站| 欧美日韩在线资源| 在线中文字幕电影| 超黄网站在线观看| 亚洲校园激情春色| 欧美日韩五区| 亚洲精品一区av| 超碰97久久国产精品牛牛| 风间由美一区二区av101| 日本精品影院| 欧美成人直播| 精品999网站| 久久国产高清| 国产一区二区三区蝌蚪| 成人一区二区三区| 久久日韩粉嫩一区二区三区| 国产精品传媒视频| 午夜精品久久久久久久蜜桃app| 亚洲精品三区| 羞羞视频在线免费国产| 国产亚洲成av人片在线观看| 欧美xnxx| 国产精品zjzjzj在线观看| 久久av网址| 欧美久久九九| 日韩在线观看一区二区| 国产精品一区2区| 2021久久国产精品不只是精品| 国产精品视频第一区| 亚洲国产欧美日韩另类综合| 在线观看日韩av先锋影音电影院| 91麻豆精品国产91久久久| 日韩第一页在线| 成年无码av片在线| 天堂中文在线免费观看| 91popny丨九色丨国产| 成人免费网址在线| 天堂资源中文在线| 成人黄视频在线观看| 成人免费看黄| 超碰地址久久| 亚洲v在线看| 日韩在线一二三区| 不卡视频免费播放| 亚洲欧美日韩精品久久久久| 在线一区二区视频| 亚洲国产精品免费| 欧美剧在线观看| 国产一区亚洲二区| 国产精品粉嫩av| 在线免费观看黄| 激情开心成人网| 女仆av观看一区| 红桃视频国产精品| 国产一区二区影院| 国产精品理伦片| 91国模大尺度私拍在线视频| 日韩电影大全免费观看2023年上 | yourporn在线观看视频| 青青在线视频| 精品国产乱码久久久久久樱花| av一区二区高清| 国产亚洲亚洲| av亚洲精华国产精华精| 亚洲一本大道在线| 日韩欧美国产wwwww| 啊v视频在线一区二区三区| 久久夜色邦福利网| 午夜爽爽爽男女免费观看影院| 成人亚洲综合天堂| 性欧美videohd高精| 国内精品久久久久久久久电影网| 露脸国产精品自产在线播| 国产永久在线观看| 国产美女极品在线| 成人影院在线播放| 岛国成人av| 亚洲国产激情| 99精品视频中文字幕| 亚洲大尺度视频在线观看| 日韩精品一区二区三区视频 | 天堂在线网站| 伊人影院在线播放| 特黄毛片在线观看| 国产成人精品999在线观看| 可以看av的网站久久看| 国产日韩欧美麻豆| 欧美日高清视频| 日韩视频永久免费观看| 国产精品一区二区午夜嘿嘿嘿小说| 欧美性欧美巨大黑白大战| 日韩理论在线观看| 精品精品国产高清a毛片牛牛| 欧美国产乱视频| www.黄com| 黄色网页在线免费观看| 日本99精品| 中文亚洲字幕| 日本一区二区三区dvd视频在线| 欧美色网一区二区| 米奇精品一区二区三区在线观看| 日本免费资源| 蜜芽在线免费观看| 成人涩涩网站| 秋霞国产午夜精品免费视频| 亚洲欧美一区二区三区极速播放| 精品国免费一区二区三区| 3344国产精品免费看| 免费av高清| 另类激情视频| 亚洲视频电影在线| 99久久精品免费观看| 欧美主播一区二区三区| 久久网福利资源网站| 丰满湿润大白屁股bbw按摩| 黄网址在线观看| 精品国产影院| 麻豆精品一区二区三区| 亚洲大片在线观看| 中文字幕在线亚洲| 黄页在线免费观看| 欧美videossex另类| 欧美男gay| 国产**成人网毛片九色| 91激情五月电影| 欧美高清videos高潮hd| av网站免费| 欧美xxx视频| 亚洲黄色大片| 成人欧美一区二区三区1314| 亚洲精品国精品久久99热| 免费在线观看国产黄| 成人性生交大片免费看午夜| 2019精品视频| 一色屋免费视频| 国产在线看片| 美女久久久久| 成人精品国产福利| 6080国产精品一区二区| 踪合国产第二页| 国产女人在线观看| 欧美日日夜夜| 粉嫩av一区二区三区在线播放| 欧美撒尿777hd撒尿| 91精品国产91久久久久福利| 在线看的av| 999在线精品| 国产一区欧美日韩| 欧美男男青年gay1069videost| 成年男人的天堂| 国产福利片在线| 免费精品国产的网站免费观看| 福利视频网站一区二区三区| 91麻豆精品国产91久久久久久| 欧美乱大交xxxx| 成人福利网站| 伊人久久大香线| 综合久久国产九一剧情麻豆| 色噜噜狠狠狠综合曰曰曰| 日本成人a视频| а√天堂资源国产精品| 爽爽淫人综合网网站| 色综合天天综合网天天看片| 久久人91精品久久久久久不卡| 亚洲美女电影在线| 久久狠狠久久| 91在线免费播放| 久久人91精品久久久久久不卡| 四虎永久成年免费影院| 川上优的av在线一区二区| 伊人国产在线看一| 免费在线黄网| 日本一区二区三区播放| 国产精品综合一区二区| 51午夜精品国产| 91.www| 天堂8中文在线最新版在线| 中日韩男男gay无套| 舔着乳尖日韩一区| 2023亚洲男人天堂| 色老头视频在线观看| 国产精品久久久久蜜臀| 亚洲欧美日韩在线不卡| 色综合老司机第九色激情 | 韩国版免费三体| 亚洲综合色婷婷在线观看| 国产成人精品www牛牛影视| 欧美刺激脚交jootjob| 免费网站看电影大片| 电影一区二区| 国产真实乱偷精品视频免| 欧美一区二区精美| 免费黄网在线看| 亚洲国产尤物| 国产美女精品在线| 亚洲高清免费观看高清完整版| www免费视频| 亚洲久草在线| www.欧美色图| 亚洲一区二区国产| 欧美18一12sex性处hd| 香蕉久久夜色精品国产使用方法| 国产婷婷色一区二区三区四区| 日韩中文字幕视频| 视频在线观看你懂的| re久久精品视频| 亚洲美女淫视频| 欧美亚洲视频在线看网址| 成人免费网站在线观看视频| 亚洲电影在线| 精品视频一区二区不卡| 偷偷看偷偷操| 91精品一久久香蕉国产线看观看| 成人性生交大片免费| 亚洲午夜未删减在线观看| 蜜桃专区在线| 久久婷婷蜜乳一本欲蜜臀| 亚洲一级片在线观看| 5g影院5g天天爽永久免费影院| 9999在线视频| 久久99久久久久| 亚洲精品国精品久久99热| 日本不卡1区2区3区| 国产成人一区| 亚洲综合在线五月| 四虎一区二区三区| 伊人色综合一区二区三区影院视频| 热久久免费视频| 亚洲国产古装精品网站| 意大利激情丛林无删减版dvd| 精品国产一区探花在线观看| 亚洲综合成人网| 欧美另类videosbest视频| 国产韩日精品| 99久久精品国产导航| 久久伊人精品视频| 国产秀色在线www免费观看| 久久久久久黄| 亚洲精品ady| 五丁香在线视频| 国产精品二区影院| 69堂亚洲精品首页| 久久久久久77777| 久久视频在线| 欧美无砖砖区免费| free亚洲| 日韩精品一区二区久久| 色综合色综合色综合色综合色综合| 在线www天堂网在线| 一区二区三区四区视频免费观看 | 97色伦图片97色伦在线电影| 国内精品久久久久久久影视简单| 亚洲成av人片一区二区| 91视频在线| 99精品中文字幕在线不卡| 成人欧美一区二区三区| 久久99国产视频| 久久伊人影院| 日韩码欧中文字| 国产乱在线观看视频| 6080成人| 亚洲国产你懂的| 奇米影视狠888| 亚洲免费福利一区| 福利精品视频在线| 电影eeuss影院www| 欧美人妖在线| 欧美曰成人黄网| 欧美aaa一级片| 午夜久久久久| 欧美刺激脚交jootjob| 九色视频在线播放| 久久午夜精品| 在线观看国产成人av片| 国产原创视频在线观看| 国产在线播精品第三| 久久香蕉频线观| 女厕盗摄一区二区三区| 久久久久久久久97黄色工厂| 一二三四日本中文字幕| 亚州欧美在线| 一区二区三区欧美激情| 色噜噜在线网| 国产一区二区三区91| 欧美综合久久久| 伊人春色在线| 免费在线成人| 日韩在线中文视频| 91桃色在线观看| 久久日一线二线三线suv| 青青草原国产在线观看| 加勒比色综合久久久久久久久| 欧美性极品少妇精品网站| 黄色免费看片| 在线亚洲一区| 在线精品播放av| av手机在线观看| 国产肉丝袜一区二区| 国产午夜三区视频在线| 亚欧洲精品视频在线观看| 欧美丝袜自拍制服另类| 一级片在线播放| 麻豆一区二区在线| 欧美激情一区二区三区高清视频| 国产a亚洲精品| 一区二区三区中文字幕在线观看| jizz视频18| 亚洲国产老妈| 日韩经典一区二区三区| 性爱视频在线播放| 99re视频精品| 国产在线视频精品视频免费看| 亚洲日本三级| 欧美一级电影网站| 色的视频在线免费看| 懂色av中文字幕一区二区三区 | 欧美野外性xxxxfeexxxx| 豆花视频一区二区| 欧美午夜精品久久久久久超碰| 视频国产一区二区三区| 精品在线一区二区三区| 2019av中文字幕| 伦理一区二区三区| 欧美喷潮久久久xxxxx| 国产一二三区在线| 成人性生交大合| 麻豆精品不卡国产免费看| 久久最新网址| 亚洲成av人片在线观看香蕉| 亚洲卡一卡二| 国产精品女人毛片| sesexxxx| 久久精品伊人| 欧美激情在线狂野欧美精品| 日韩一二三区| 欧美日韩大陆在线| 日本电影全部在线观看网站视频| 91在线视频免费观看| 影音先锋5566资源站| 中出一区二区| 最近中文字幕日韩精品| 黄色成人小视频| 日韩欧美黄色动漫| 理论视频在线| 91在线观看免费视频| 免费看美女毛片| 在线综合亚洲| 久久全球大尺度高清视频| 日韩精品免费一区二区三区竹菊 | 91成人福利在线| 日韩有码中文字幕在线| 日韩三级电影网址| a√中文在线观看| 亚洲一区二区视频在线观看| 领导边摸边吃奶边做爽在线观看| 国产精品一区一区三区| 国产卡二和卡三的视频| 欧美精品aa| 欧美日韩第一页| 加勒比色老久久爱综合网| 亚洲成人黄色在线观看| 蜜桃视频在线观看免费视频| 精品久久久久久亚洲国产300| 日本福利在线观看| 91伊人久久大香线蕉| jizz免费观看视频| 日韩精品亚洲一区二区三区免费| 免费一区二区三区视频狠狠| 久久一区91|