国产av不卡一区二区_欧美xxxx做受欧美_成年人看的毛片_亚洲第一天堂在线观看_亚洲午夜精品久久久中文影院av_8x8ⅹ国产精品一区二区二区_久久精品国产sm调教网站演员_亚洲av综合色区无码一二三区_成人免费激情视频_国产九九九视频

Global EditionASIA 中文雙語Fran?ais
Lifestyle
Home / Lifestyle / People

Aussie scientists set up contest to foil cocky robots

Xinhua | Updated: 2019-11-02 10:15
Share
Share - WeChat
[Photo/VCG]

We could soon live in a world where domestic service robots perform household chores and clean up for us as we go about our daily lives. But what if your new mechanical helper decides to put your laptop in the dishwasher, places your cat in the bathtub and throws your treasured possessions into the trash?

Current vision systems being tested on "simulated" domestic robots in the cluttered, unpredictable environments of the real world, are suffering severely from what experts refer to as overconfidence - meaning robots are unable to know when they don't know exactly what an object is.

When introduced into our day-to-day lives, this overconfidence poses a huge risk to people's safety and belongings, and represents a barrier for the development of autonomous robotics.

"These (models) are often trained on a specific data set, so you show it a lot of examples of different objects. But in the real world, you often encounter situations that are not part of that training data set," Niko Sunderhauf explained to Xinhua. He works as a chief investigator with the Australian Center for Robotic Vision, headquartered at Queensland University of Technology.

"So, if you train these systems to detect 100 different objects, and then it sees one that it has not seen before, it will just overconfidently think it is one of the object types it knows, and then do something with that, and that can be damaging to the object or very unsafe."

Earlier this year, in an effort to curb these potentially cocky machines, Sunderhauf's team at the ACRV launched a world-first competition, the Robotic Vision Challenge, inviting teams from around the world to find a way to make robots less sure of themselves, and safer for the rest of us.

Sunderhauf hopes that by crowdsourcing the problem and tapping into researchers' natural competitiveness, they can overcome this monumental stumbling block of modern robotics.

The open-ended challenge has already captured global attention due to its implications regarding one of the most excitement inducing and ear-tingling concepts in robotics today - deep learning.

While it dates back to the 1980s, deep learning "boomed" in 2012 and was hailed as a revolution in artificial intelligence, enabling robots to solve all kinds of complex problems without assistance, and behaving more like humans in the way they see, listen and think.

When applied to tasks like photo-captioning, online ad targeting, or even medical diagnosis, deep learning has proved incredibly efficient, and many organizations reliably employ these methods, with the cost of mistakes being relatively low.

However, when you introduce these intelligence systems into a physical machine which will interact with people and animals in the real world - the stakes are decidedly higher.

"As soon as you put these systems on robots that work in the real world the consequences can be severe, so it's really important to get this part right and have this inbuilt uncertainty and caution in the system," Sunderhauf said.

To solve these issues would undoubtedly play a part in taking robotics to the next level, not just in delivering us our autonomous housekeepers, but in a range of other applications from autonomous cars and drones to smart sidewalks and robotic shop attendants.

Since it was launched in the middle of the year, the competition has had 111 submissions from 18 teams all around the world and Sunderhauf said that while results have been promising, there is still a long way to go to where they want to be.

The competition provides participants with 200,000 realistic images of living spaces from 40 simulated indoor video sequences, including kitchens, bedrooms, bathrooms and even outdoor living areas, complete with clutter, and rich with uncertain objects.

Entrants are required to develop the best possible system of probabilistic object detection, which can accurately estimate spatial and semantic uncertainty.

Sunderhauf hopes that the ongoing nature of the challenge will motivate teams to come up with a solution which may well propel robotics research and application on a global scale.

"I think everybody's a little bit competitive and if you can compare how good your algorithm and your research is with a lot of other people around the world who are working on the same problem, it's just very inspiring," Sunderhauf said.

"It's like the Olympic Games - when everybody competes under the same rules, and you can see who is doing the best."

In November, Sunderhauf will travel with members of his team to the annual International Conference on Intelligent Robots and Systems in Macao, China to present and discuss their findings so far.

As one of three leading robotics conferences in the world, IROS is a valuable opportunity for researchers to come together to compare notes, and collaborate on taking technology to the next level.

"There will be a lot of interaction and discussion around the ways forward and that will be really exciting to see what everybody thinks and really excited to see different directions," Sunderhauf said.

Most Popular
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
欧美福利电影网| 色的视频在线免费看| 成年网站在线看| 初体验·韩国| 欧美三级超在线视频| 8x海外华人永久免费日韩内陆视频 | 91午夜国产| 黄色片子免费| 日本成片免费高清| 一级毛片美女欧洲| 91在线资源站| 一个人看的日本免费视频 | 久久国产精品亚洲人一区二区三区| 欧美色图婷婷| 欧美偷窥清纯综合图区| 91久久精品无嫩草影院| 秋霞一区二区| 无人区乱码一区二区三区| 欧洲大片精品免费永久看nba| 国产一区二区三区免费观看在线 | 在线视频观看一区| 欧美在线免费视屏| 欧美男男青年gay1069videost| 欧美日韩另类一区| 4438亚洲最大| 精品毛片乱码1区2区3区| 精品国产一区二区三区忘忧草| 精品福利一二区| 日韩精品视频免费专区在线播放 | 欧美毛片又粗又长又大| 午夜国产福利| 国产美女黄色| 免费vip影院| 成人免费淫片免费观看 | 国产精品一区二区av交换| 国产精品美女久久久久久不卡 | 香蕉网站在线| 黄色的视频在线免费观看| 在线观看免费网站黄| 成人在线观看网站| 国产美女av在线| 国产在线拍揄自揄拍视频 | 露脸国产精品自产在线播| 国产精品被窝福利一区| 成年女人午夜毛片免费看| www.4438全国最大| 在线播放中文字幕| 国产福利在线看| av毛片在线| 亚洲一二三四| 久久av网站| 狠狠做六月爱婷婷综合aⅴ| 四虎8848精品成人免费网站| 欧美天天视频| 蜜臀va亚洲va欧美va天堂| 国产精品影视网| 久久婷婷色综合| 国产精品不卡在线| 午夜免费久久看| 欧美日本一道本| 日韩电影中文字幕一区| 久久九九亚洲综合| 二区三区不卡不卡视频| 66av国产| 成年人视频在线| 国产在线视频你懂得| 日本大片在线播放| 欧亚一区二区| 全球av集中精品导航福利| 99久久99久久精品国产片桃花| 亚洲巨乳在线| 国产激情精品久久久第一区二区| 国产亚洲精品aa午夜观看| 一区二区免费在线| 欧美日韩mp4| 亚洲色图在线观看| 国产最新精品视频| 一个人在线观看免费视频www| 啦啦啦在线视频免费观看高清中文 | 国产一区二区三区四区三区四| 秋霞国产午夜精品免费视频| 91在线观看地址| 一区二区三区免费网站| 欧美人体做爰大胆视频| 国产一区二区三区欧美| 亚洲色图偷拍| www.毛片| 韩日视频在线| 夜鲁夜鲁夜鲁视频在线播放| 国产精品45p| 欧美精品大片| 国产v综合v亚洲欧| 亚洲精品久久久蜜桃| 欧美三级日韩三级国产三级| 亚洲人成自拍网站| 中文娱乐网av| 色偷偷亚洲女人天堂观看欧| 成人好色电影| 日本精品在线中文字幕| 国产精品免费99久久久| 老司机午夜精品视频在线观看| 99九九99九九九视频精品| 亚洲成人福利片| 亚洲成人免费网站| 国模叶桐国产精品一区| 丰满少妇在线观看网站| 欧美91精品久久久久国产性生爱| 乡村艳史在线观看| 欧美调教视频| 久久久久久穴| 中文一区二区在线观看| 欧美三级日本三级少妇99| 中文欧美日本在线资源| 欧美另类交视频| 国产中文字幕第一页| 亚洲区欧洲区| 欧美激情影院| 日韩av中文字幕一区二区三区| 久久精品综合网| 欧美午夜不卡视频| 久久精品夜夜夜夜夜久久| 国产精品美女视频免费观看软件| 免费高清在线| 天堂av在线| 日韩成人激情| 国产乱码字幕精品高清av| 一区二区三区四区不卡在线| 欧美精品一区二区三区很污很色的 | 波多野洁衣一区| 福利一区福利二区微拍刺激| 亚洲人成人99网站| 九九这里只精品视在线99| 亚洲色图16p| jizz亚洲女人高潮大叫| 永久亚洲成a人片777777| 成人av电影在线| 欧美影院午夜播放| 欧美成人午夜激情在线| www.天天操| 肉肉视频在线观看| 丝袜久久网站| 久久99精品国产麻豆不卡| 亚洲一区二区视频在线观看| 国产视频久久网| 九色porny丨精品自拍视频| 日本私人网站在线观看| 亚洲18在线| 国产日韩欧美一区二区三区在线观看| 国产亚洲精品中文字幕| 欧美一级一区二区| 中文字幕av高清片| 一卡二卡三卡亚洲| 精品乱码一区二区三区四区| 激情成人综合| 亚洲欧洲av在线| 日韩av在线高清| 国产乱视频在线观看播放| 国产三级在线看| 北条麻妃一区二区三区在线观看 | 九九精品视频在线看| 亚洲高清在线视频| 中文字幕免费国产精品| 肥婆老bbb肥婆bbbbb| 永久免费网站在线| 成人aaaa| 久久日韩粉嫩一区二区三区| 日韩一级在线观看| 欧美xxbbb1手交| 日本中文字幕在线播放| 日日天天久久| 国产91精品精华液一区二区三区 | 欧美精品第1页| 先锋影音男人站| 黄网站在线观看| 麻豆国产欧美一区二区三区r| 国产在线精品免费| 欧美日韩亚洲国产综合| 中文av字幕| bbbbbbbbbbb在线视频| 日韩超碰人人爽人人做人人添| 国产真实乱子伦精品视频| 在线视频观看一区| 4438全国亚洲精品在线观看视频| 永久免费在线| 国产精品高潮呻吟久久久久| 国产精品正在播放| 91麻豆精品国产综合久久久久久| 4hu四虎永久网址| 最新97超碰在线| 不卡一区综合视频| 国产午夜亚洲精品理论片色戒| 亚洲国产精品字幕| 免费福利在线| 成人软件在线观看| 久久成人亚洲| 日韩欧美中文字幕在线播放| 51视频国产精品一区二区| 久久久久久久影视| 精品在线观看入口| 久久午夜免费电影| 国产亚洲aⅴaaaaaa毛片| www99xav| 精品一区二区三区中文字幕 | 欧美色图第二页| 黄色动漫在线观看| 91精品一区二区三区综合在线爱| 国产精品久久福利| 日韩在线观看视频免费| 视频免费观看| 91精品国产自产精品男人的天堂 | 天天操天天色综合| 97视频免费在线观看| 成年网站在线| 久久在线视频免费观看| 亚洲三级电影网站| 美日韩精品免费观看视频| 污视频在线看操| 国产毛片一区二区三区| 国产精品欧美精品| 欧美裸体男粗大视频在线观看| 香蕉网站在线| 欧美大片aaaa| 一区二区欧美国产| 亚洲在线视频免费| a级网站在线播放| 亚洲高清成人| 日本韩国欧美国产| 国产精品入口免费麻豆| 麻豆免费在线| 久久精品国产第一区二区三区| 欧美一区二区三区啪啪| 美女大黄三级视频在线观看| 国产精品伦一区二区| 国产精品综合av一区二区国产馆| 欧美变态凌虐bdsm| 国产美女在线看| 欧美性大战久久久久久久蜜臀 | 福利片在线一区二区| 99热在线免费观看| 亚洲欧美制服综合另类| 成人国产精品免费观看| 国产一区二区三区亚洲综合| 中文字幕www| 精品亚洲一区二区三区在线播放| 丁香啪啪综合成人亚洲小说| 日本午夜精品| 成人高清免费观看mv| 亚洲网站视频在线观看| 日韩欧美极品在线观看| 亚洲大胆视频| www.久久.com| 色图欧美色图| 日韩视频一区二区在线观看| 久久www成人_看片免费不卡| 视频在线这里都是精品| 88xx成人精品| 欧美日韩国产精品专区| 免费日本视频一区| 一区二区三区中文| 91久久在线| 日本精品一区二区三区高清| 性生活视频网址| 国产精品国产三级在线观看| 99久久综合国产精品| www.午夜精品| 天天综合视频在线观看| 国产日韩欧美高清免费| 日韩一区二区视频| 欧美aaa一级| 成人高清电影网站| 亚洲成人av免费| 夜夜夜操操操| 超碰cao国产精品一区二区| 国产精品视频一区二区三区不卡| 久久久综合av| 樱花草涩涩www在线播放| 国产精品99久久久久| 日韩最新在线视频| www在线免费观看视频| 蜜臀av性久久久久蜜臀aⅴ| 精品视频—区二区三区免费| 日本在线丨区| 99热免费精品| 亚洲国产91色在线| 免费在线黄色影片| 亚洲在线成人| 亚洲欧洲一区二区三区久久| 国产视频第一区| 天堂资源在线中文精品| 亚洲人成电影网站色…| 日本在线播放| 看电视剧不卡顿的网站| 中日韩美女免费视频网址在线观看 | 精品一区二区三区视频| 在线亚洲午夜片av大片| 欧美a在线看| 麻豆国产欧美一区二区三区| 在线观看国产精品91| 国产午夜精品久久久久免费视| 狠狠久久亚洲欧美| 另类少妇人与禽zozz0性伦| av免费不卡| 99久久免费国产| 欧美一级高清免费播放| 成人国产精品| 亚洲手机成人高清视频| 美女被草91| 欧美人妖在线| 欧美少妇性性性| а√天堂www在线а√天堂视频| 亚洲高清二区| 亚洲欧美另类国产| 国产调教视频在线观看| 国产成人午夜片在线观看高清观看| 欧美成人免费网| 欧美成人资源| 成人欧美一区二区三区| 色先锋最新资源| 日韩av免费大片| 日韩视频免费观看高清完整版在线观看| 尤物视频网站在线观看| 久久精品电影| www.精品av.com| 国产精品迅雷| 国产精品麻豆网站| 一分钟免费观看视频播放www| 国产成人调教视频在线观看| 欧美美女直播网站| 四虎精品在永久在线观看| 日韩成人精品视频| 久久夜色精品国产欧美乱| 欧美成a人片在线观看久| 亚洲欧洲精品一区二区三区不卡| 日日爱66.cn| 99精品视频在线观看播放| 精品久久99ma| 成人日韩欧美| 久久久99精品久久| freee性欧美| 清纯唯美亚洲综合一区| 日韩免费在线观看| 国产一二区在线| 96av麻豆蜜桃一区二区| 久热re国产手机在线观看| 欧美人妖在线| 精品少妇一区二区三区日产乱码 | eeuss鲁片一区二区三区| 欧美视频免费在线| 中文字幕视频在线| 六月丁香婷婷色狠狠久久| 久久久免费精品| 亚洲一区二区免费在线观看| 色综合久久88色综合天天免费| 国产69精品久久久久孕妇| 日本va欧美va瓶| 久久久这里只有精品视频| 91精品短视频| 91麻豆精品国产91久久久| 岛国在线视频| 97久久人人超碰| 91九色国产蝌蚪| 欧美有码视频| 色婷婷综合久久久久中文字幕1| 日韩av一级| 福利微拍一区二区| 四虎影视2018在线播放alocalhost| 国产一区二区在线视频| 在线观看免费国产成人软件| 国产99精品| 亚洲精品国产精品国产自| √天堂8资源中文在线| 亚洲美女屁股眼交3| 国产911网站| 久久精品国产亚洲一区二区三区| 97精品一区二区视频在线观看| 欧美精品国产白浆久久久久| 日韩欧美一级片| 高潮在线视频| 亚洲午夜精品在线| 色资源网在线观看| 国产精一品亚洲二区在线视频| 国产小视频在线高清播放| 亚洲成人av| 色偷偷偷亚洲综合网另类| 四虎精品永久免费| 欧美亚日韩国产aⅴ精品中极品| 日本中文字幕视频在线| 中文字幕精品一区| av手机天堂| 韩国av一区二区三区在线观看 | 国产激情一区| 精品污污网站免费看| 久久五月精品| 最近中文字幕一区二区三区| 樱桃视频免费看| 国产成人av电影在线| 一个人看的www在线免费观看| av不卡在线| 8x海外华人永久免费日韩内陆视频 | 91精品免费观看|