国产av不卡一区二区_欧美xxxx做受欧美_成年人看的毛片_亚洲第一天堂在线观看_亚洲午夜精品久久久中文影院av_8x8ⅹ国产精品一区二区二区_久久精品国产sm调教网站演员_亚洲av综合色区无码一二三区_成人免费激情视频_国产九九九视频

Global EditionASIA 中文雙語Fran?ais
Business
Home / Business / Companies

Mastercard banks on AI-driven edge

By Jiang Xueqing | China Daily | Updated: 2019-12-26 09:29
Share
Share - WeChat
Dimitrios Dosis, president of Mastercard Advisors, gives a speech at the annual Mastercard Summit in Beijing on Dec 4. [Provided to China Daily]

Mastercard is planning to embed AI-driven data analytics in the day-to-day workflow of its retail and banking customers in China, to improve the quality and efficiency of data analytics and boost returns from this technology.

A research conducted with 2,000 executives found that only 20 percent of them were getting adequate returns on the data analytics they did.

The executives gave four reasons for the surprising outcome of the research, which was jointly conducted by Mastercard and Harvard Business Review earlier this year.

"First of all, they said today's analytics is happening in silos, meaning various parts of the company are running their own analytics, and tend to produce conflicting results sometimes," said Dimitrios Dosis, president of Mastercard Advisors, during a recent interview in Beijing.

"Second, there is a big time lag between the moment you need the data and the moment you get them. Sometimes it can take weeks. Third, data analytics is not really embedded in the workflow. When people need it to make decisions, they are not getting it. And fourth, they said sometimes you need a PhD degree to understand the software and the results, which means it is not really intuitive."

The fact that data analytics is not embedded in the day-to-day workflow is one of the primary concerns of Dosis who heads Mastercard Advisors.

Offering information, consulting and implementation services to merchants and financial institutions worldwide, this unit of Mastercard helps customers cleanse and understand the data they have, including anonymized and aggregated transaction data from Mastercard, to derive recommendations for customers based on data insights and advanced analytics.

Before fully rolling out the recommendations and executing them, consulting teams from Mastercard Advisors test the recommendations through the application of a test-and-learn technology.

"What we do is identifying a concrete opportunity based on our data, specifying the targeted segments where this opportunity primarily exists and then identifying the offer, and testing and executing it. This is a classical end-to-end service we provide for many banks, including Chinese banks," Dosis said.

Right now the company is developing a technology for this end-to-end service so that data analytics will become an effective part of the day-to-day work process. That means people do not need to do specific analytics while it is happening in the background.

"Imagine that for a cards manager of a bank, when she comes in the morning, instead of her logging in and running analytics, she gets a message on her device that says, 'Looking at the data from last week, we believe you have an untapped opportunity in the mass affluent segment.'

"Automated recommendation engine provides her the right offers for the right audience and asks, 'Would you like to test it?' She says yes. Six weeks later, she gets the results, chooses the best campaign and rolls it out. The analytics is happening in the background, and she is just there to make decisions. This is the technology that is going to come next," Dosis said.

So far, deriving recommendations has been a manual process, with consultants looking at the data regularly.

Companies have a lot of data and customers would like to interact with them, but the data are not cleansed. As data cleansing takes a lot of time, artificial intelligence could be applied in the process, Dosis said.

"Normally, it took us 80 hours to analyze the data and come up with recommendations. By applying artificial intelligence and having a more automated recommendation engine, we have been able to reduce this to 10 hours," he said.

Top
BACK TO THE TOP
English
Copyright 1994 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
CLOSE
 
欧美久久一区二区三区| 精品小视频在线| 精品婷婷伊人一区三区三| 亚洲国产另类av| 亚洲三级免费电影| 国产精品电影一区二区三区| 国产亚洲精品超碰| 久久久久国产一区二区三区四区| 成人国产精品免费观看视频| 国产成人综合在线| 国产高清亚洲一区| 国产福利精品一区| 国产精品一区一区三区| 国产一区二区毛片| 国产精品一区二区在线看| 久久99精品国产麻豆不卡| 奇米色一区二区| 日本美女一区二区三区| 久久午夜精品| 先锋a资源在线看亚洲| 国产欧美一区二区三区国产幕精品| 亚洲欧美综合| 欧美精品二区| 亚洲夜间福利| 一本久道久久综合婷婷鲸鱼| 国产视频欧美| 日韩va欧美va亚洲va久久| 日日夜夜精品视频免费| 日本不卡视频一二三区| 六月丁香综合在线视频| 韩国欧美国产1区| 国产一区二区伦理片| 国产一区二区精品久久91| 国产一区二区三区四区五区美女| 国产剧情一区在线| 成人高清免费观看| 久久一区二区三区四区| 欧美激情在线看| 亚洲丝袜另类动漫二区| 一区二区三区四区五区视频在线观看| 亚洲一区二区四区蜜桃| 欧美日韩精品在线| 欧美三级视频在线观看| 日韩视频在线你懂得| 亚洲国产精品yw在线观看 | 日本免费专区| 小草av在线播放| h视频网站在线观看| a视频在线播放| 在线天堂中文资源最新版| 成人精品一区二区三区电影| 日韩激情精品| 国产欧美日韩| 午夜天堂精品久久久久| 午夜在线播放视频欧美| 久久91精品国产91久久小草| 成人一区二区三区视频在线观看 | 久久久午夜精品理论片中文字幕| 久久精品在线观看| 一区二区三区中文字幕电影| 性欧美疯狂xxxxbbbb| 欧美性猛片xxxx免费看久爱| 日韩美女主播在线视频一区二区三区| 精品亚洲国产视频| 久久国产精品首页| 澳门永久av免费网站| 91自拍.com| 国产毛片视频| 毛片在线播放网站| 欧美xxxbbb| 国产精品99久久久久久董美香| youjizz亚洲| 日韩欧美精品一区| 国产一区二区三区久久久久久久久 | 精品无人码麻豆乱码1区2区| 2021中文字幕一区亚洲| 亚洲免费在线观看| 在线欧美日韩国产| 亚洲精品久久久久久久久| 久久综合伊人77777| 亚洲国产成人影院播放| 天干天干啦夜天天天视频| 午夜黄色在线观看| 久草免费在线色站| 国产精品国产三级在线观看| 欧美日韩第一| 亚洲欧美高清| 成年人午夜久久久| 亚洲一区二三区| 这里只有精品99re| 日韩在线激情视频| 思思99精品视频在线观看| 99.玖玖.com| 超碰97在线免费观看| 中老年在线免费视频| 国产乱人伦丫前精品视频| 亚洲啊v在线观看| 久久精品国产999大香线蕉| av动漫一区二区| 亚洲福利一二三区| 亚洲电影天堂av| 久久久久国产精品免费网站| 成人精品第一区二区三区| 一级毛片免费看| 四季久久免费一区二区三区四区| 国产亚洲精aa在线看| 欧美精选视频在线观看| 日本vs亚洲vs韩国一区三区| 久久久九九九九| 色婷婷av一区二区三区大白胸| 欧美一区二区三区啪啪| 在线播放亚洲激情| 久久免费观看视频| 夜夜躁狠狠躁日日躁婷婷小说| 国产无遮挡在线视频免费观看| 丝袜美腿av在线| 一区二区免费| 99热精品在线| 91视频免费观看| 色综合色狠狠天天综合色| 亚洲欧美综合区自拍另类| 男女爱爱视频免费| 啦啦啦在线视频免费观看高清中文 | 婷婷丁香六月天| 亚洲妇熟xxxx妇色黄| 永久免费精品视频| 亚洲综合精品| 国产精品家庭影院| 91精品国产色综合久久ai换脸 | 久久精品99久久久香蕉| 国产伦精品一区二区三区高清版禁| 最猛黑人系列在线播放| 美女100%一区| 小处雏高清一区二区三区| 国产精品综合在线视频| 午夜av一区二区三区| 亚洲人成电影在线| 国产精品视频一区二区三区麻豆| 天堂av在线免费观看| 日韩漫画puputoon| 欧美成人中文| 久久精子c满五个校花| 欧美久久久久久蜜桃| 欧美激情一区二区三区高清视频| 嫩草影院在线观看网站成人| 日韩激情av| 国产欧美日韩视频在线| 国产精品一区二区久激情瑜伽 | 青青草视频在线免费观看| 国产日本久久| 亚洲精品极品| 亚洲桃色在线一区| 亚洲男人第一网站| 91九色论坛| 国产秀色在线www免费观看| 欧美一区二区三区久久| 国内外成人在线视频| 欧美日韩国产一区在线| 中文字幕在线视频日韩| 天天看天天操| 超碰国产一区| 国产精品大片免费观看| 欧美激情中文不卡| 日韩精品高清在线| 成人亚洲精品777777ww| 超碰免费在线播放| 精品高清久久| 不卡av电影在线播放| 91精品综合久久久久久| 岛国电影中文在线| 爱久久·www| 欧美男男freegayvideosroom| 久久国产生活片100| 在线看不卡av| 亚洲依依成人| 国产中文在线视频| 秋霞综合在线视频| 国产成人免费av在线| 欧美日韩国产免费| 91国语精品自产拍在线观看性色| 成人a视频在线| 国产一区一区| 激情欧美日韩一区二区| 在线免费不卡视频| 亚洲天堂久久久| 3p在线观看| 欧洲美女日日| 国产亚洲欧美激情| 亚洲亚裔videos黑人hd| 天天爽夜夜爽| 婷婷丁香久久| 蜜桃一区二区三区在线| 欧美性猛片aaaaaaa做受| 蜜桃色永久入口| 久操免费在线| 国产精品久久久久久久久久10秀| 中文字幕精品在线不卡| 一区二区三区久久精品| 成人国产视频在线| 国产精品视频一区二区三区| 免费一级欧美片在线观看| 色综合久久综合网| 黄网站在线观看永久免费| 午夜视频在线看| 婷婷亚洲综合| 伊人夜夜躁av伊人久久| 欧美不卡视频一区发布| 亚州色图欧美色图| 伊人成综合网yiren22| 久久色在线观看| 一本色道久久88综合亚洲精品ⅰ| 国产农村av| 亚洲日本一区二区三区在线| 国产不卡视频在线播放| 精品99999| 毛片av免费观看| 在线播放成人| 国产成人av电影在线观看| 精品久久久影院| h片在线观看免费| 99精品女人在线观看免费视频| 国产一区中文字幕| 精品久久久久久久久久久久包黑料| 日本视频免费| 国产一区高清| 福利一区福利二区| 日韩成人免费视频| 麻豆免费网站| 欧美有码在线| 国产精品乱码久久久久久| 久久视频精品在线| 黄视频在线播放| 91精品综合久久久久久久久久久| 一区二区不卡在线播放 | av欧美精品.com| 在线视频欧美性高潮| 色黄视频在线| 亚洲精品国模| 中文字幕亚洲区| 久久久久久国产精品美女| 在线国产91| 最新日韩av| 欧美日韩一级视频| 免费a级片网站| www.91精品| 久久网这里都是精品| 久久亚洲欧美日韩精品专区| 国产区在线视频| 狠狠色狠狠色综合日日tαg| 色av综合在线| 色在线视频播放| 91精品视频一区二区| 91伊人久久大香线蕉| 久久久av电影| 精品美女在线观看视频在线观看| 亚洲激情网址| 777亚洲妇女| 在线看片地址| 亚洲性视频大全| 亚洲免费色视频| 好男人www社区在线视频夜恋| 日本不卡网站| 国产成人亚洲综合a∨猫咪| 一区二区中文字幕| 国产午夜在线观看| 亚洲国内自拍| 日韩一区二区精品| 女生裸体视频网站免费观看| 欧美色图激情小说| 欧美视频一区二区三区…| 一个人看的www在线免费视频| 伊人亚洲精品| 中文字幕的久久| 欧美亚洲另类视频| 欧美人体一区二区三区| 成人免费视频app| 久久久精品网站| 污片视频在线免费观看| 黄页视频在线91| 国产一区二区三区久久精品| 国产片在线观看| 久久精品日产第一区二区 | 黑人精品一区| 91女人视频在线观看| 久久久久成人精品| 在线毛片观看| 97se亚洲国产综合自在线| 精品视频9999| 日本乱码一区二区三区不卡| gogogo免费视频观看亚洲一| 久久久久久久色| xx欧美xxx| 久久影院视频免费| 男男h黄动漫啪啪无遮挡软件| jizz免费一区二区三区| 国产日产欧产精品推荐色 | 黄页在线观看视频| 欧美高清日韩| 日韩欧美在线一区二区三区| 在线观看视频色潮| 亚洲日产国产精品| 日韩成人在线视频网站| 国产高清免费在线播放| 日韩av中文在线观看| 亚洲视频国产视频| 手机在线免费看av| 国产suv精品一区二区三区| 欧美大荫蒂xxx| 日日夜夜天天综合| 国产精品毛片a∨一区二区三区| 青青草国产免费自拍| 日本在线一区二区三区| 亚洲地区一二三色| 猫咪av网站| 欧美激情无毛| 亚洲国产精品热久久| 婷婷激情在线| 国产剧情一区二区| 午夜剧场成人观在线视频免费观看| 中文av在线全新| 国产欧美一区二区精品婷婷| 久草国产视频| 五月国产精品| 欧美三级蜜桃2在线观看| eeuss一区| 狂野欧美一区| 久久伊人精品视频| 惠美惠精品网| 1024亚洲合集| 成品网站w灬+源码1| 忘忧草精品久久久久久久高清| 日韩一级二级三级精品视频| wwwww在线观看免费视频| 韩国女主播成人在线| 91av国产在线| 日韩精品一级| 日韩欧美国产高清91| 黄动漫在线免费观看| 丝袜亚洲精品中文字幕一区| 俺也去精品视频在线观看| 国产综合色区在线观看| 亚洲欧美另类图片小说| 悠悠资源av网站| 激情亚洲网站| 深夜成人在线观看| 欧美一区国产| 亚洲男人的天堂在线观看| 日日干天天草| 亚洲激情自拍| 久久中文字幕国产| 久久久久伊人| 欧美性69xxxx肥| 一区二区成人| 国产电影精品久久禁18| 久久九九热视频| 精品国产a一区二区三区v免费| 日韩精品综合一本久道在线视频| 日本在线免费| 久久精品亚洲精品国产欧美kt∨| 免费观看91视频大全| 综合天堂av久久久久久久| 亚洲精品一区二区网址| 中文在线最新版地址| 亚洲黄一区二区三区| 久草.com| 麻豆国产91在线播放| 男人午夜影院| 在线视频亚洲专区| 亚洲精品在线三区| av影视在线| 夜夜操天天操亚洲| 亚洲欧洲动漫| 国产精品一区二区无线| 欧美性猛交一区二区三区| 欧美影院三区| 亚洲日本欧美中文幕| 午夜无码国产理论在线| 黑人巨大精品欧美一区二区三区| 无线免费在线视频| 处破女av一区二区| 九色91播放| 在线亚洲观看| 97精品视频在线播放| 免费视频亚洲| 亚洲美女久久久| 成人做爰视频www| 一本大道久久a久久精品综合| 国产免费a∨片在线观看不卡| 91香蕉视频在线| www.尤物.com| 日韩av中文字幕一区二区| 色吊丝中文字幕| 97精品视频| 丝袜亚洲欧美日韩综合| 日韩在线成人| 欧美va天堂va视频va在线| 国产不卡人人| 亚洲国产精品久久久久秋霞影院 | lutube成人福利在线观看| 国产日韩成人精品|