国产av不卡一区二区_欧美xxxx做受欧美_成年人看的毛片_亚洲第一天堂在线观看_亚洲午夜精品久久久中文影院av_8x8ⅹ国产精品一区二区二区_久久精品国产sm调教网站演员_亚洲av综合色区无码一二三区_成人免费激情视频_国产九九九视频

Global EditionASIA 中文雙語Fran?ais
Business
Home / Business / Technology

Deep learning rising in importance within booming AI sector

By FAN FEIFEI | China Daily | Updated: 2022-04-06 09:40
Share
Share - WeChat
A robot is on display at an AI conference in Shanghai, on July 10, 2020. [Photo/IC]

The application scenarios of China's artificial intelligence-powered deep-learning frameworks will be more diversified and buoyed by open-source platforms and large-scale industrial use, with the cost and application threshold to be further lowered, said Ma Yanjun, general manager of Baidu AI technology ecosystem.

Meanwhile, deep-learning frameworks will be integrated and innovated with more frontier industries such as scientific computing, quantum computing and life sciences, Ma said.

Deep-learning frameworks, which are used by software developers to build AI applications, have been included in the field of next-generation AI and represent key cutting-edge technology supported by the nation during the 14th Five-Year Plan period (2021-25).

As the first open-source deep-learning platform in China, Baidu's PaddlePaddle provides software developers of all skill levels with the tools, services and resources they need to rapidly adopt and implement deep learning at scale.

Ma said that at present, an increasing number of developers and companies are pushing forward with applications for intelligent transformation based on domestic deep-learning platforms so as to create solutions targeted at different scenarios in various industries.

As deep-learning frameworks represent the operating system in the era of intelligence and constitute the infrastructure of AI coupled with chips, he said, deep-learning platforms are crucial to building an AI ecosystem and connecting the basic infrastructure technology such as chips and final applications.

PaddlePaddle has garnered 4.06 million developers on its platform, served more than 157,000 enterprises and institutions, created 476,000 AI models and now covers dozens of industries such as manufacturing, agriculture, healthcare, city management, transportation and finance.

It has worked with 22 domestic and foreign hardware manufacturers such as Intel, Nvidia and Huawei, and is now compatible with 31 kinds of chips, Ma said.

Wang Haifeng, chief technology officer of Baidu, said in an earlier interview that the company will continue to drive technological innovation, partner with developers to advance deep learning and AI technologies, and speed up the process of industrial intelligence.

According to global market consultancy IDC, PaddlePaddle ranked first in terms of market share among deep-learning platforms in China as of December 2021, surpassing Google's TensorFlow and Facebook's PyTorch.

However, there are some bottlenecks that hinder the development of deep-learning frameworks, Ma said. He said China is still experiencing a shortage of technical talent in underlying AI technologies and it takes at least three to six months to put an AI application into use.

It is a long and complicated process to develop a deep-learning framework and build an AI application ecosystem with a large amount of investment, Ma added.

In addition, Huawei Technologies Co has launched its own AI computing framework Mind-Spore, which is aimed at helping software developers build advanced AI applications with ease and optimize their models more quickly. AI computing frameworks are critical to making AI applications easier and more accessible, the company said.

Lu Yanxia, assistant research director of IDC, said homegrown AI deep-learning frameworks-such as PaddlePaddle and Mind-Spore-are growing steadily, with their influence gradually enhanced thanks to their more localized products and services, and a better understanding of local client and industry needs.

"We can see the technological level and richness of functionality are on a par with or outperform their foreign counterparts' rival products, which will help boost market share of native deep-learning frameworks," Lu said, adding more efforts should be made to accelerate the globalization push of domestic AI frameworks.

Deep-learning technologies create opportunities for revamping operations and workload management, and enhancing productivity, experts said.

In the wake of the COVID-19 pandemic, LinkingMed, a Beijing-based oncology data platform and medical data analysis company, released China's first open-source AI model for pneumonia CT scan analysis, powered by PaddlePaddle.

The AI model can quickly detect and identify pneumonic lesions while providing quantitative assessment for diagnosis information, including the number, volume and proportion of pneumonic lesions. LinkingMed has developed an AI-powered pneumonia screening and lesion-detection system, which can pinpoint the disease in less than one minute with a detection accuracy of 92 percent.

Top
BACK TO THE TOP
English
Copyright 1994 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
CLOSE
 
国产欧美日本亚洲精品一4区| 91九色精品国产一区二区| 国产精品18| 激情小说亚洲| 国外成人福利视频| 99只有精品| 日韩欧美精品一区二区综合视频| 高潮在线视频| av今日在线| 国产经典三级在线| 国产探花在线观看| 国产91足控脚交在线观看| 污视频免费在线观看| 中国av在线播放| 污污视频在线看| 羞羞视频在线观看免费| 污污片在线免费视频| caopeng在线| 伊人在我在线看导航| 最新日本在线观看| 少女频道在线观看高清| 少女频道在线观看免费播放电视剧| 在线视频国产区| 欧美日韩经典丝袜| 波多野在线观看| 欧美sm一区| 香蕉视频亚洲一级| xxxxx.日韩| 日日夜夜亚洲| 精品久久久久久久久久岛国gif| 国产免费av国片精品草莓男男| 高清一区二区中文字幕| 天堂av一区| 日韩啪啪网站| 欧美三级美国一级| 中文字幕日韩欧美精品高清在线| 欧美精品日本| 久久人人97超碰国产公开结果| 肉色丝袜一区二区| 国产在线精品一区在线观看麻豆| 精品一二三四在线| 丁香激情综合国产| 国产喂奶挤奶一区二区三区| 18欧美亚洲精品| 亚洲宅男天堂在线观看无病毒| 五月天一区二区| 欧美午夜影院一区| 欧美mv和日韩mv的网站| 亚洲欧美日韩在线一区| 不卡伊人av在线播放| 68精品久久久久久欧美| 欧美在线xxxx| 毛片毛片毛片| 免费白浆视频| 国产天堂素人系列在线视频| 中国av在线播放| 日本精品另类| 国产亚洲精品美女久久 | 国产欧美日韩在线视频| 国产精品电影一区二区三区| 亚洲高清免费一级二级三级| 欧美伊人久久久久久久久影院| 91精品国产综合久久精品| 亚洲激情国产精品| 日韩在线观看av| 96精品视频在线| 国产成人精品久久一区二区小说| 4hu最新网址| 天海翼一区二区三区免费| 18视频免费网址在线观看| 91美女精品| 欧美日韩黄色| 日韩三级在线| 老鸭窝亚洲一区二区三区| 成人小视频免费观看| 中文在线一区二区| 欧美日韩免费在线观看| 日韩欧美自拍偷拍| 久久久极品av| 欧美日韩看片| av高清日电影| 在线免费av电影| 中文字幕影音在线| 中文在线综合| 亚洲人metart人体| 美女在线一区二区| 国产欧美精品一区二区色综合朱莉| 亚洲国产欧美在线人成| 欧美一级理论片| 日韩小视频网址| 亚洲精品手机在线| 一级欧洲av| 黄色av网址在线免费观看| www.超碰在线| 国产精品17p| 欧美国产三区| 国产盗摄女厕一区二区三区| 亚洲三级理论片| 91精品免费观看| 久久激情视频久久| 国内精品久久久久久不卡影院| 国产小黄视频| 国产91在线视频蝌蚪| 亚洲伊人精品酒店| 国产精品88久久久久久| 极品少妇一区二区三区精品视频| 国产精品你懂的| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 亚洲性夜色噜噜噜7777| 男人天堂影院| 国产黄色免费网| 羞羞网站在线免费观看| 国产+成+人+亚洲欧洲在线| 欧美三级小说| 成人动漫一区二区| 精品久久久久人成| 亚洲人精品午夜在线观看| 最近中文字幕mv免费高清视频8 | 久久久国产精品麻豆| 黑人巨大精品欧美一区二区| 亚洲人成免费电影| 亚洲欧美日韩色图| 夜夜嗨aⅴ免费视频| 牛牛精品视频在线| 日本午夜精品| 日韩精品亚洲一区| 中文字幕在线不卡一区| 欧美一卡二卡在线观看| 久久久久久久影院| 成人精品3d动漫| 国产精品186在线观看在线播放| 欧美91在线| 日韩中文字幕91| 国产精品国产三级国产| 欧美一区二区在线不卡| 777国产偷窥盗摄精品视频| 99热99在线| 波多野结衣中文在线| 亚洲免费福利一区| 久久99精品久久久| 污片在线观看一区二区| 中国日韩欧美久久久久久久久| 国产麻豆精品一区二区三区v视界| 亚洲裸体视频| 欧美成人一二区| 亚洲大胆在线| 国产精品视频yy9299一区| 日韩欧美自拍偷拍| 中文在线视频观看| 天堂91在线| 国产精品va视频| 国产精品毛片一区二区三区| 国产精品色在线| 亚洲а∨天堂久久精品喷水| 又粗又硬又爽国产视频| 青梅竹马是消防员在线| 榴莲视频成人app| 天使萌一区二区三区免费观看| 亚洲乱码中文字幕| 亚洲视频在线看| 污的视频网站| 欧美黑人xx片| 香蕉久久网站| 国产亚洲综合色| 亚洲成av人片在线观看香蕉| 国内精品免费视频精选在线观看| 成年人视频在线免费观看| 澳门久久精品| 国产精品资源在线| 欧美亚洲综合另类| 2020欧美日韩在线视频| 一二三在线视频社区| 精品国产乱码久久久久久樱花| 日韩中文字幕一区二区三区| 亚洲成a天堂v人片| 久久这里有精品| 免费xxxxx网站中文字幕| 小明成人免费视频一区| 在线综合视频| 性做久久久久久| 欧美成人免费播放| 毛片视频免费观看| 欧美视频在线观看一区| 日韩精品中文字幕久久臀| 性生活视频网址| 国产区美女在线| 欧美一区二区三区久久精品| 国产精品美女久久久久久久久 | heisi视频网在线观看| 国产99re66在线视频| 欧美激情第8页| 亚洲日本一区二区三区| 北条麻妃久久精品| 色久视频在线观看| 日韩精品中文字幕一区二区 | 欧美黑人性受xxxx喷水| 黄色精品免费看| 国产精品99一区二区三| 国产精品久久久久久久午夜片| 国产一区二区三区网站| 69av二区| 欧美日韩午夜电影网| 国产精品一区2区| 欧美一级专区免费大片| brazzers欧美最新版视频| gogo久久| 噜噜噜躁狠狠躁狠狠精品视频| 欧美性xxxxxxx| 2019年中文字幕| 国产鲁鲁视频在线观看特色| 这里只有精品在线| 一区二区三区欧美日| 欧美国产亚洲精品久久久8v| 免费播放片a高清在线观看| 四虎影视精品| 中文字幕高清不卡| 日韩在线免费观看视频| 尤物视频免费在线观看| 一区二区三区视频免费观看| 国产日韩欧美制服另类| 日韩亚洲在线观看| 在线观看免费网站| 国产精品一区二区99| 国产精品污污网站在线观看 | 福利网站在线观看| 中文精品视频| 欧美日韩精品一区二区天天拍小说 | 91啪亚洲精品| 少妇精69xxtheporn| 亚洲啪啪aⅴ一区二区三区9色| 九九热精品视频在线观看| 国产女人水真多18毛片18精品视频| 最近2019中文字幕第三页视频| 亚洲成人男人天堂| 成人无号精品一区二区三区| 亚洲乱码国产乱码精品精的特点 | 密臀av在线播放| 日本午夜精品视频在线观看| 337p亚洲精品色噜噜噜| 黄色激情网址| 国产视频一区二区在线播放| 99免费精品视频| 最近中文字幕日韩精品 | 在线免费观看亚洲| 99在线精品视频| 中文字幕亚洲综合久久| 深夜福利在线视频| 亚洲精品2区| 欧美网站在线观看| 国产成人羞羞电影网站在线观看| 性欧美1819sex性高清| 韩国精品在线观看| 日韩av在线资源| 在线观看免费观看在线91| 日韩精品四区| 精品色蜜蜜精品视频在线观看| 精品一区二区三区免费站| 日本一区免费网站| 国产久卡久卡久卡久卡视频精品| 亚洲欧美国产精品| 尤物免费看在线视频| 亚洲澳门在线| 欧美午夜片在线看| 奇米影视第四狠狠777| 任你躁在线精品免费| 亚洲欧美日韩在线播放| 亚洲精品乱码久久久久久蜜桃动漫| www.成人爱| 成人免费高清视频| 欧美成年人视频网站| 亚洲制服国产| 老司机一区二区| 亚洲人成电影在线观看天堂色| 国产主播福利在线| 国产日韩欧美在线播放不卡| 日韩视频在线永久播放| 特黄特黄的视频| 亚洲精品成人| 欧美高清hd18日本| 国产免费黄视频在线观看| 欧美日韩高清| 91久久奴性调教| 成人免费淫片免费观看| 欧美一二区在线观看| 色狠狠一区二区三区香蕉| www色啪啪| 欧美禁忌电影| 色综合久久66| 插菊花综合1| 日韩综合网站| 欧美日韩成人综合在线一区二区| qvod激情图片| 亚洲一区色图| 日韩丝袜美女视频| 偷拍自拍在线| 久久久精品性| 中文字幕精品久久| 在线观看小视频| 高清在线观看日韩| 久久久久久一区二区三区| 亚洲第一二三四区| 国产人成亚洲第一网站在线播放| 在线天堂中文www官网| 国产精一区二区| 一区二区三区四区激情| 免费做暖暖免费观看日本| 亚洲自拍电影| 欧美视频在线播放| 宅男深夜视频| 99在线热播精品免费99热| 国产网站欧美日韩免费精品在线观看 | 日韩精品www| 免费在线视频欧美| 国产精品一级片| 午夜精品久久久久久久99热浪潮| 成人精品动漫| 亚洲欧美日韩国产成人精品影院| 一二三四日本在线| 国产成人三级| 91.com在线观看| 韩国免费在线视频| 九九视频精品免费| 欧美精品九九久久| 青草综合视频| 亚洲一区二区三区中文字幕| av在线影音| 一本一道久久a久久精品蜜桃| 精品国产一区二区三区久久久蜜月 | 久久成人免费网站| 久久99久久99精品中文字幕 | 三级毛片在线看| 成人精品亚洲| 欧美成人一区二区三区| 日韩欧美小视频| av动漫一区二区| 国产永久免费| 93在线视频精品免费观看| 精品久久人人做人人爱| 蜜芽在线免费观看| av在线不卡免费看| 欧美xx在线| 秋霞综合在线视频| 欧美日韩免费一区二区三区| 国产在线资源| 国产精品亚洲人在线观看| 美女把尿口扒开让男人桶在线观看| 成人激情自拍| 欧美色国产精品| 成人精品一区二区| 丁香五精品蜜臀久久久久99网站 | 91日韩视频| 日韩成人久久久| 91在线超碰| 亚洲美腿欧美偷拍| 成人午夜激情| 日韩精品电影在线观看| 久久久久久久久久亚洲| 久久综合偷偷噜噜噜色| 欧美在线啊v一区| 97人人在线| 久久一日本道色综合| 天堂网视频在线观看| 综合一区在线| 日韩在线视频观看正片免费网站| 日韩精品免费观看视频| 欧美日韩国产专区| 香蕉视频免费在线| 国产电影一区在线| 国产九九九九| 欧美影视一区| 日韩网站在线观看| 国产精品一区二区精品视频观看| 色婷婷激情综合| 丁香在线视频| 久久久欧美精品sm网站| www.老鸭窝.com| 国产日韩综合| 97视频在线观看视频免费视频| 国产精品videossex| 日韩免费在线观看| 久久99亚洲网美利坚合众国| 亚洲男人天堂av网| 天海翼一区二区三区免费| 国产白丝精品91爽爽久久| 国产精品国产三级国产试看| 欧美一区激情| 欧美美女15p| 校花撩起jk露出白色内裤国产精品| 精品日韩99亚洲| 成人av三级| 丁香五六月婷婷久久激情| 啊v视频在线| 国产精品私房写真福利视频| 激情六月丁香| 国产传媒日韩欧美成人| 夜夜爽视频导航| 免费在线日韩av| 影音先锋中文在线观看| 亚洲国产精品久久久久蝴蝶传媒| 久久韩国免费视频|