国产av不卡一区二区_欧美xxxx做受欧美_成年人看的毛片_亚洲第一天堂在线观看_亚洲午夜精品久久久中文影院av_8x8ⅹ国产精品一区二区二区_久久精品国产sm调教网站演员_亚洲av综合色区无码一二三区_成人免费激情视频_国产九九九视频

Global EditionASIA 中文雙語Fran?ais
Opinion
Home / Opinion / Global Views

Empowering the future

By YANG ZEKUN and YANG YIYONG | China Daily Global | Updated: 2025-11-20 08:27
Share
Share - WeChat
WANG XIAOYING/CHINA DAILY

Global cooperation in AI will help promote industrial transformation and bring benefits to all

"Artificial Intelligence +" is no longer just an idea. Fueled by rapid technological advances, evolving regulatory frameworks and booming market demand, it has now become a central engine driving industry transformation in China and powering the nation's high-quality economic growth.

First, the AI industry is expanding rapidly and emerging as a new catalyst of growth. In 2024, China's core AI sector surpassed 700 billion yuan ($98.49 billion), up 21 percent year-on-year. The growth outpaces GDP expansion, highlighting AI's role as a key driver of the digital economy.

Second, a robust AI business ecosystem is taking shape, led by top-tier and unicorn companies. By the end of 2024, more than 4,800 AI-related companies operated nationwide, creating a diverse mix of tech giants, unicorns, and small- and medium-sized innovators. China's investment and financing in AI totaled $7.6 billion in 2024, second only to that of the United States, underscoring China's leadership in the global AI capital market. At the same time, AI applications are seeing more in-depth adoption, delivering tangible results in key sectors.

Third, AI is steadily penetrating various sectors and being widely applied. Financial services show the highest adoption rates, with applications such as intelligent risk control, quantitative trading and robo-advisers becoming common practice. AI has helped lower nonperforming loans by 1.2 percentage points and boosted insurance claim efficiency by 40 percent. In manufacturing, industrial robots and predictive maintenance are driving significant productivity gains. In healthcare services, AI-assisted diagnostics and telemedicine are helping mitigate the uneven access to medical care across the country.

Finally, China is seeing a growing AI talent pool and research capabilities. In 2024, the country had about 450,000 AI researchers, up 18 percent year-on-year, with those holding doctorates or higher credentials accounting for 20 percent, a sign of steadily rising expertise.

Despite the encouraging momentum, China's "AI+" development still faces several challenges.

First, China's AI sector is making significant strides but still faces critical technology bottlenecks. China depends heavily on imported high-end AI chips and foundational algorithm frameworks. Domestic versions of advanced chips lag behind top global players by roughly two generations in computing density and energy efficiency, preventing them from supporting large-scale model training.

For deep-learning frameworks, foreign platforms such as Tensor-Flow and PyTorch dominate 80 percent of the market, leaving domestic alternatives far behind in ecosystem maturity, developer adoption and the capacity to support complex, industrial-scale applications.

Second, AI adoption in industries is still limited and often difficult. In traditional manufacturing and service industries, AI penetration has reached 25 percent, still far behind more digital-savvy sectors such as the internet and finance, and well below US levels, where adoption stands at 42 percent in manufacturing and 38 percent in services.

Fewer than 15 percent of SMEs have implemented AI, compared with over 60 percent of large companies. Barriers, including high implementation costs, lack of technical teams and poor adaptation to specific scenarios, result in low returns on investment.

Third, the talent structure is imbalanced, with a shortage of top-tier experts and interdisciplinary professionals. The supply-demand ratio for leading AI scientists and algorithm architects is 1:9. China accounts for 18 percent of the world's highly cited AI researchers, well below the US' 52 percent. China lacks senior talents in areas such as large-model training and AI chip design.

There is also a prominent shortfall in interdisciplinary talents who understand both the fundamentals of AI and the operational logic of a traditional industry. In 2024, only about 40,000 students were enrolled in AI relevant programs, far below what the market needs.

Fourth, underutilized data resources and widespread data silos and barriers are holding back AI training and development. For Chinese enterprises, large amounts of production and operational datasets sit idle due to inconsistent formats, poor labeling and security concerns, while European companies have achieved an average 62 percent of data utilization rate through standardized data management systems.

In China's public sector, from public services to healthcare and transport, data sharing has risen to 25 percent, still well below Singapore's 78 percent and Canada's 65 percent, hindering data supplies for AI model training.

Global cooperation will be key to advancing AI, and progress hinges on four key areas.

First, the country needs to build international R&D alliances to tackle core technology challenges. This means creating multinational research groups, launching global scientific projects focused on AI chips and algorithms, and sharing results. At the same time, it is necessary to promote open-source compatibility, and harmonize AI frameworks and computing through organizations, such as the International Organization for Standardization and the International Electrotechnical Commission, to help prevent fragmented ecosystems.

Second, multinational demonstration projects should be launched to speed up real-world adoption. It is advisable to establish a world AI cooperation organization to help develop pilot programs in manufacturing, healthcare and other key sectors. For example, Southeast Asia could jointly develop "AI+smart manufacturing" parks to support the digital transformation of SMEs. At the same time, developing countries need to be supported with technology transfer, computing resources and talent training to help narrow the digital divide.

Third, countries should collaborate to develop global AI talents. This means building international joint laboratories and scholarship programs, expanding scholar exchanges and overseas education programs, promoting mutual recognition of AI credentials, and creating unified assessment standards to encourage the free flow of top talents.

Finally, the United Nations' leadership in AI governance should be upheld. International governance bodies should be established to drive consensus on ethical principles and algorithmic transparency. The international community should advance collaborative research, co-develop ecosystems and make rules through extensive consultation to make AI a global public good that benefits humanity.

Yang Zekun is a research fellow at the National Academy of Development and Strategy at Renmin University of China. Yang Yiyong is a senior research fellow at the Academy of Macroeconomic Research. The authors contributed this article to China Watch, a think tank powered by China Daily.

The views do not necessarily reflect those of China Daily.

Contact the editor at editor@chinawatch.cn.

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
国产午夜电影| 蜜桃精品视频在线| 91精品国产成人观看| 杨幂一区二区三区免费看视频| 精品国产乱码一区二区三区 | 美日韩精品免费视频| 亚洲最大在线视频| 亚洲欧美制服中文字幕| 精品网站999www| 亚洲国产成人久久综合一区| 精品免费一区二区三区| 精品精品欲导航| 亚洲国产精品va在线看黑人| 欧美va亚洲va国产综合| 日韩欧美www| 日韩欧美黄色影院| 日韩一二在线观看| 欧美xxxx在线观看| 欧美成人a在线| 精品国产制服丝袜高跟| 精品第一国产综合精品aⅴ| 精品国产91洋老外米糕| 2019中文亚洲字幕| 国产免费视频在线| 成人高清免费观看mv| 福利在线视频导航| 毛片av在线| 婷婷丁香在线| 欧美日韩国产观看视频| 亚洲天堂一区二区| 欧美特黄色片| 91久久精品无嫩草影院| 秋霞在线一区| 国产成人精品一区二区免费看京 | www.蜜桃av| а√最新版天堂中文在线| 成人综合av| 在线视频国产福利| 四虎在线免费看| 欧洲天堂在线观看| 成人18在线| 成人福利在线观看视频| 美女尤物在线视频| 成人av观看| 一区在线不卡| 亚洲精品一二三**| 九色精品91| 国产精品国产一区| 久久久999国产| 亚洲欧美中文另类| 久久久精品国产亚洲| 性欧美xxxx交| 亚洲国产成人在人网站天堂| xxxx性欧美黑人| 天天草天天爽| 中文字幕在线资源| 蜜桃视频网站在线| 91福利区在线观看| 祥仔av免费一区二区三区四区| 51vv免费精品视频一区二区| av伊人久久| 亚洲精品资源| 久久精品国产免费| aaa亚洲精品| 中文字幕人成不卡一区| 欧美视频在线观看免费| 欧美一级二级三级蜜桃| 亚洲欧洲av一区二区| 美日韩精品免费视频| 最好2018中文免费视频| 轻轻操 在线观看| 蜜桃视频免费网站| 视频一区二区三区不卡| 一本大道色婷婷在线| 精品视频在线播放一区二区三区| 国产欧美高清视频在线| 国产精品av一区二区| 琪琪一区二区三区| 久久久久久久久久看片| 亚洲高清免费观看高清完整版在线观看 | 久久久一区二区三区捆绑**| 亚洲图片激情小说| 欧美色综合网站| 亚洲裸体xxxx| 国模叶桐国产精品一区| 99久久国产综合精品女小说| 国产国产国产国产国产国产| 搞黄视频免费在线观看| 女生影院久久| 杨幂一区二区三区免费看视频| 影音先锋亚洲一区| 免费黄漫在线观看| 136福利视频| 天堂在线一二区| tube8在线hd| 一区二区在线视频观看| 午夜精品一区二区三区国产 | 精品人在线二区三区| 精品国产网站地址| 欧美jizzhd欧美精品巨大| 国产1区2区3区| 黄色在线免费网站| 精品国产亚洲日本| 综合久久十次| 国产电影一区在线| 亚洲福利视频一区二区| 精品福利av导航| 久久久免费观看| 美女大黄三级视频在线观看| 美女欧美视频在线观看免费 | 不卡视频在线观看| 亚洲a一区二区| 精品毛片乱码1区2区3区| 欧美—级a级欧美特级ar全黄| 视频在线你懂的| 国产在线网站| 欧美综合影院| 亚洲电影影音先锋| 国产精品1区2区| 亚洲国产精品自拍| 亚洲国产精品久久久久久| 久久免费视频网| 九色自拍麻豆| 青青影院在线观看| 亚洲日本va中文字幕| 亚洲片区在线| 国产欧美日韩麻豆91| 欧美剧情片在线观看| 欧美成人合集magnet| 色涩视频在线观看| 成年人在线视频| 四虎国产精品免费久久5151| 国内揄拍国内精品久久| 91在线国产福利| 欧美在线观看18| 久久色在线播放| 狠狠色噜噜狠狠| 麻豆影视在线观看_| 91精品啪在线观看国产爱臀| 番号集在线观看| 色偷偷福利视频| 最新av在线播放| 羞羞答答一区二区| 麻豆91精品视频| 亚洲国产美国国产综合一区二区| 精品伊人久久97| 国产精品一区二区午夜嘿嘿嘿小说| 色综合888| 99视频有精品高清视频| 亚洲毛片视频| 亚洲欧美在线视频观看| 亚洲的天堂在线中文字幕| 久久爱com| 色久视频在线播放| 国产情侣一区在线| 久久精品一区| 亚洲精品一卡二卡| 亚洲女人天堂成人av在线| www.xxx.国产| 老司机av在线免费看| 精品按摩偷拍| 国产一区二区不卡老阿姨| 色综合色综合色综合色综合色综合| 精品国产自在精品国产浪潮| 福利视频1000| 国产网站在线| 一区二区三区午夜探花| 国产三级三级三级精品8ⅰ区| 日韩小视频在线观看专区| 影音先锋中文资源站| 欧美捆绑视频| 精品国产一区二区三区成人影院| 男男视频亚洲欧美| 日韩欧美成人免费视频| 精品中文字幕在线2019| 日本电影免费看| 久久亚洲国产精品尤物| 久热国产精品| 极品美女销魂一区二区三区免费 | 成人在色线视频在线观看免费大全| 大黄网站在线观看| 91精品一区国产高清在线gif | 免费看的av| 亚洲欧洲自拍| 亚洲国产黄色| 亚洲韩国精品一区| 萌白酱国产一区二区| 天天噜天天色| 欧美日韩黄色| 国产毛片一区二区| 51精品视频一区二区三区| 欧美日韩一区二区三区在线播放| 五月香视频在线观看| 国产一区99| 久久嫩草精品久久久精品| 亚洲国产欧美一区二区丝袜黑人| 伊人午夜电影| 成人片免费看| 久久精品伊人| 欧美私人免费视频| 一色屋成人免费精品网站| 国产高清一区二区三区视频 | 欧美久久影院| 亚洲激情av在线| 欧美极品xxxx| 国产中文字幕在线| 日韩精品久久| 日韩毛片一二三区| 久久国产加勒比精品无码| 一级视频在线免费观看| 亚洲人成网77777色在线播放| 99re热视频这里只精品| 日韩精品中文字幕在线观看| 先锋影音资源999| 四虎在线精品| 最近中文字幕mv免费高清在线| 麻豆av在线免费观看| 亚洲精品1234| 日韩欧美中文第一页| 色先锋av资源中文字幕| av毛片在线看| 亚洲午夜极品| 色琪琪一区二区三区亚洲区| 影音先锋中文在线观看| 特级毛片在线| 亚洲欧美日韩精品一区二区 | h片在线观看视频免费| 国产乱码精品| 欧美日韩国产综合一区二区| 国产成人精品自线拍| 色戒汤唯在线观看| 日韩激情一区二区| 91麻豆精品国产91久久久久久久久 | 亚洲精品欧美综合四区| 91国产视频在线播放| av片哪里在线观看| 亚洲麻豆av| 欧美日韩精品免费| 女人18毛片水真多免费播放| 在线一区视频观看| 国产成人免费视频网站高清观看视频| 亚洲国产精品yw在线观看| 丁香婷婷激情| 日本三级久久| 18涩涩午夜精品.www| 亚州国产精品久久久| 欧美亚洲一区在线| 久草视频免费看| 国产精品69xx| 日本欧洲一区二区| 精品欧美一区二区在线观看| 99色在线视频| 日韩av网站在线免费观看| 国产精品免费久久久久| 久久久视频在线| 超碰人人在线| 日韩影院精彩在线| 精品国产麻豆免费人成网站| 德国一级在线视频| 午夜精品福利影院| 亚洲一区二区美女| 欧美精品xx| jizzjizz少妇亚洲水多| 91美女视频网站| 欧美成人免费观看| 久久国产精品一区| 日韩精品国产欧美| 亚洲国产欧美在线成人app| 一二三四在线视频观看社区| 亚洲澳门在线| 欧美色综合影院| 成人网址大全| 国产探花在线精品一区二区| 午夜精品久久久久久久久| 国产精选在线观看| 国产亚洲精aa在线看| 亚洲国产精品v| 一本大道一区二区三区| 国精产品一区一区三区四川| 不卡av在线免费观看| 欧美成人小视频| 在线免费观看a视频| 美女视频网站久久| 亚洲人成电影网站色| 最新真实国产在线视频| 久久天堂成人| 亚洲精品在线视频| 97超碰人人在线| 欧美一级网站| 懂色av噜噜一区二区三区av| 91污在线观看| 久久久久久久久久国产精品| 狠狠操一区二区三区| 成人美女视频在线看| 欧美精品免费在线观看| 欧美aaaaaaa| 粉嫩嫩av羞羞动漫久久久| 欧美片一区二区三区| 欧美a级在线观看| 不卡视频在线观看| 97免费视频在线| 成人国产精品入口免费视频| 久久久精品免费观看| 一本岛在免费一二三区| 亚洲精品tv| 自拍偷自拍亚洲精品播放| 国产免费一级片| 牛牛视频精品一区二区不卡| 岛国精品视频在线播放| 免费高清成人| 欧美黄色aaaa| 亚洲激情在线观看| 在线激情免费视频| 精品一区二区三区免费| 久久艳片www.17c.com | 亚洲xx在线| 亚洲三级在线| 亚洲中国最大av网站| jizz在线视频| 在线中文一区| 亚洲精品久久久久国产| 免费黄色网址在线观看| 国产精品一区二区三区乱码| 久久免费少妇高潮久久精品99| 久久xxx视频| 亚洲精品一卡二卡| av在线你懂的| 欧美女人交a| 国产午夜精品久久久 | 福利在线免费视频| 久久一日本道色综合| 欧美乱妇18p| 麻豆国产精品va在线观看不卡| 99热国产在线中文| 成人永久aaa| 高清av中文在线字幕观看1| 日韩有吗在线观看| 色综合久久久久综合体| 麻豆电影传媒二区| 免费在线日韩av| 精品国产拍在线观看| 色老太综合网| 亚洲理论在线观看| av电影在线观| 亚洲激情网址| 在线视频欧美日韩精品| 色资源二区在线视频| 自拍偷拍亚洲综合| 天天操天天搞| 国产精品视区| 久久综合免费视频| 欧美一区二区三区男人的天堂| 国产特黄在线| 波多野洁衣一区| 精品推荐国产麻豆剧传媒| 国产调教一区二区三区| 欧美v国产在线一区二区三区| 国产福利在线播放麻豆| 久久久久久免费网| 桃花视频大全不卡免费观看网站| 亚欧美无遮挡hd高清在线视频| 日韩av在线免费播放| 日韩影院在线| 樱桃国产成人精品视频| gay视频丨vk| 日本欧美一区二区| 欧美亚洲国产日本| 日韩影视高清在线观看| 日韩一区二区影院| av电影免费在线观看| 亚洲国产精品99久久久久久久久| 成年人福利网站| 99亚洲伊人久久精品影院红桃| 不卡av在线网站| 九色精品蝌蚪| 欧美精品乱人伦久久久久久| 色中色综合影院手机版在线观看| 巨骚激情综合| www.亚洲色图| 免费做暖暖免费观看日本| 激情成人综合| 欧美日韩国产二区| 国产精品对白久久久久粗| 91精品国产综合久久婷婷香蕉 | 久久在线免费观看| 波多野结衣手机在线视频| 国产日韩欧美一区二区三区在线观看| 欧美成人精品一区二区三区| 中文无码日韩欧| 日韩欧美精品三级| 夜鲁夜鲁夜鲁视频在线播放| 亚洲成人免费在线| 美女欧美视频在线观看免费| 久久午夜羞羞影院免费观看| 成年人网站在线观看免费| 日精品一区二区三区| 黄色一二三区| 国产精品久久久乱弄 | 色呦呦在线资源| 亚洲福利视频一区|