国产av不卡一区二区_欧美xxxx做受欧美_成年人看的毛片_亚洲第一天堂在线观看_亚洲午夜精品久久久中文影院av_8x8ⅹ国产精品一区二区二区_久久精品国产sm调教网站演员_亚洲av综合色区无码一二三区_成人免费激情视频_国产九九九视频

Global EditionASIA 中文雙語Fran?ais
Opinion
Home / Opinion / Global Lens

Proper data sharing essential for language models

By Madeline Carr | China Daily | Updated: 2025-02-11 07:17
Share
Share - WeChat
SONG CHEN/CHINA DAILY

The potential for artificial intelligence to improve lives has captured the attention of governments across the world. Straining budgets, growing inefficiencies, and the rising costs of healthcare, housing, and other social services mean that the promise of AI-driven systems is becoming increasingly attractive. There are a range of challenges involved in doing this including sharing sensitive or proprietary data sets, ensuring the outcomes truly benefit human beings, and designing policies that can make all of this possible.

One lesson that we've taken from the past is that the country that develops or leads in emerging technologies inevitably does so through its own vision of what is "good", "preferable" and "beneficial" — particularly for its own political, commercial and civil benefits. Views on what "good" looks like can, and usually do, vary quite widely but the decisions that dominant states or private actors take on technologies have a huge impact in terms of how those technologies are used by others.

Sharing data sets for training AI large language models (LLMs) is a particularly powerful and yet sensitive issue. Imagine the potential for medical researchers if they had unrestricted access to immediate and dynamically updated data on diabetes through medical implants. These data could include a range of information, from geography, activity levels, diets, environmental factors, medical treatment, and more providing an incredibly comprehensive overview of a disease that impacts more than half a billion people worldwide. AI analysis of those data sets could bring benefits in a fraction of the time otherwise required.

But such data are increasingly locked within commercial arrangements focused on extracting profits. This raises alarm bells for governments that feel their own indigenous data are at risk of predatory or monopolistic AI companies based elsewhere. Connections between notions of sovereign control over data for those with "low token" languages (those not widely spoken) are growing.

There is a very live discussion underway in Latin America, for example, on the absorption of indigenous languages into foreign owned and operated LLMs. The European Union cloud ecosystem, critical to the increased computer processing required by advanced AI systems, is still dominated by US monopolies. Consideration needs to be given to how a small number of (often monopolistic) companies can and should be governed globally through a system within which they are able to influence the industrial, trade and even foreign policies of state actors.

Focusing on profit generation and efficiency when it comes to technology innovation has only taken us so far. One could argue (and many do) that technology motivated by these twin forces has delivered huge benefits to society over the last century. But we have also observed that there is a limit to how effectively those benefits trickle down if they are not carefully governed.

Indeed, one of the harsh truths that we have confronted in many places is that there are no market drivers for many of the outcomes that we have hoped would eventuate from emerging technologies. Cybersecurity is an apt example. We've seen the growth of two symbiotic sectors, both hugely profitable.

The first sector releases insecure software and hardware into the market with insufficient investment in security. And the second sector comes along later, finding vulnerabilities and problems and reporting them. Both of these sectors are hugely profitable and the product of market forces. Both are reliant on the other not changing. And neither delivers security to the level that we need it or when we need it. We should take note of this and make sure AI systems and services do not replicate this model.

Markets have not and will not deliver human-focused outcomes or public goods by themselves. To ensure they do so, we require policy initiatives, planning, regulation, and healthy discussions on what is and what is not desirable for human beings. Technological innovation develops to fulfill the wishes and needs of those in a position to direct it. That's why it is so important that there is a broad range of inputs into that problem definition process. Mark Zuckerberg's recent announcement that Meta will dismantle its DEI program is a retrograde step away from ensuring that we have a diversity of perspectives in these powerful organizations.

Despite the incredibly exciting, dynamic period of technological innovation that we are in the midst of, one thing that has lagged behind in many places is any kind of innovation in the processes and practices needed to translate technological innovations into positive outcomes. Indeed, policymaking is generally carried out today in much the same way that it was 100 years ago. Regulating technologies to extract benefits while minimizing the negative consequences of technologies is a practice in its infancy.

Furthermore, it's not a field in which we've particularly been able to accommodate failure. Experimentation in policymaking on technology remains challenging for most governments and when something is attempted but found to be ineffective, winding that policy back or reversing course is often perceived as a "policy failure". This is in stark contrast to the "fail fast" culture that dominates those tech companies we are attempting to govern. Human rights and societal benefits have too frequently been neglected out of fear that "regulation will stifle innovation "but this has set us up for decades of very poor protection for any element of society apart from the tech sector itself.

China perhaps has been the most innovative in this field with very dynamic and flexible approaches to tech policy. The international data port established at Lingang Special Area in Shanghai is an excellent example of thinking creatively and constructively about the challenges of cross-border data flows. Good policy is an integral element of the successful uptake of AI and other emerging technologies. And that gets forgotten far too often at our peril.

Ultimately, AI offers not only technological solutions to societal problems (if properly governed). It is a well-established principle of international relations that the more economically integrated states are, and the more they trade, the less likely they are to descend into primitive, kinetic conflicts. And it's quite possible that the imperative and incentives to share global data sets could have a similar effect on global affairs.

If governments remain focused on using AI to address human-centric goals, the significant benefits of shared data sets could not only set us up for technological innovation, but also sufficiently bind us together in ways that make continued international cooperation the bedrock of that success.

The author is a professor of Global Politics and Cybersecurity at University College London. The views don't necessarily reflect those of China Daily.

If you have a specific expertise, or would like to share your thought about our stories, then send us your writings at opinion@chinadaily.com.cn, and comment@chinadaily.com.cn.

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1994 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
亚洲精品在线二区| 欧美大片免费久久精品三p| 国产精品久久久久久亚洲伦| 久久亚洲春色中文字幕久久久| 国产综合色视频| 日韩va欧美va亚洲va久久| 国产亚洲在线观看| 亚洲精品视频啊美女在线直播| 欧美1区3d| 888久久久| 国产精品麻豆久久| 欧美3p视频| 91影院成人| 久久精品国产亚洲夜色av网站| 精品日本12videosex| 日韩三级视频| 色吊丝一区二区| 同性恋视频一区| 日韩高清一级| 久久av免费看| 精品免费av| 日韩欧美大片| 美女激情福利视频在线观看| 91精品免费观看| 欧美日韩美少妇| 精品视频一区 二区 三区| 欧美午夜一区二区| 欧美性生活久久| 欧美日韩高清在线播放| 911精品产国品一二三产区| 欧美区一区二区三区| 欧美军同video69gay| 在线不卡免费av| 日韩亚洲欧美一区| 亚洲精品美女久久久久| 亚洲女同性videos| 色视频www在线播放国产成人| 精品国产一区av| 久久综合88中文色鬼| 欧美福利小视频| 91精品国产91久久| 亚洲永久免费网站| 日韩黄色成人| 7799国产精品久久久久99| 网站在线观看你懂的| 免费黄色网网址| 丰满少妇又爽又紧又丰满电影| 免费av福利在线观看| 国产女优裸体网站| 天堂中文字幕在线| 在线视频二区| 超免费在线视频| 日本成人福利| av一级亚洲| 国产综合久久久| 亚洲在线久久| 亚洲主播在线| 国产在线国偷精品产拍免费yy| 成人性视频免费网站| 日本在线视频网| 日本最新在线视频| 菠萝蜜视频在线观看www入口| 依依综合在线| 国产亚洲亚洲国产一二区| 偷拍亚洲精品| 欧美日本在线| 日本欧美一区二区三区乱码| 国产1区2区3区精品美女| 91蜜桃婷婷狠狠久久综合9色| 国产精品国产精品国产专区不蜜 | 成人免费91| 天天操综合520| 你懂的一区二区| 久久一区中文字幕| 国产精品123| 欧美激情综合网| 亚洲小说欧美激情另类| 欧美日本乱大交xxxxx| 精品亚洲一区二区三区| 久久精品在线视频| 91爱视频在线| 日本黄色免费网址| 国产三级av在线| 黄在线免费观看| 欧美va在线| 妖精一区二区三区精品视频| 欧美日韩精选| 国产一区二区三区在线观看精品| 国产欧美一区二区精品忘忧草| 亚洲国产日韩在线一区模特| 3751色影院一区二区三区| 在线电影欧美日韩一区二区私密| 亚洲第一成人在线视频| 九九爱免费视频在线观看| 蜜臀在线观看| 黄色的视频在线观看| av日韩一区| 久久精品国产亚洲夜色av网站| 日韩不卡在线观看日韩不卡视频| 91免费视频大全| 午夜精品福利一区二区三区蜜桃| 精品处破学生在线二十三| 欧美成人四级hd版| 国产chinese男男gaygay网站| 羞羞视频网站在线免费观看| 伊人影院在线视频| 秋霞影院一区| 欧美在线播放| 国产91综合一区在线观看| 亚洲美女淫视频| 日韩一区二区三区电影在线观看| 久久精品国产96久久久香蕉| 国产字幕在线看| 中文字幕在线视频不卡| а√在线天堂官网| 欧美亚洲tv| 香蕉亚洲视频| 欧美三级特黄| 男人添女人下部高潮视频在线观看| 欧美va视频| 欧美hentaied在线观看| 美女国产一区二区三区| 欧美经典一区二区| 欧美久久久久久久久久| 两个人的视频www国产精品| 日本黄色入口| yourporn在线观看中文站| 国产精品久久乐| 亚洲国产精品久久久天堂| 国产麻豆视频精品| 午夜精品久久久久久久99水蜜桃 | 亚洲精品97久久| 在线成人综合色一区| av在线天天| 国模私拍视频在线播放| 秋霞影视一区二区三区| 日韩av电影免费观看高清完整版| 中文字幕在线观看不卡视频| 日韩一区二区高清| 911国产网站尤物在线观看| 国产女呦网站| 亚洲第一av| 色综合天天综合网中文字幕| 成人一区在线看| 色婷婷综合久久久| 免费91麻豆精品国产自产在线观看| 秋霞午夜剧场| av大片在线| 偷拍亚洲精品| 国产麻豆精品95视频| 精品久久久久久久久久久久久| 少妇av一区二区三区| 国产日韩综合av| 色综合色狠狠天天综合色| 色吧影院999| 搞黄网站免费观看| 91蜜桃在线视频| 中日韩免视频上线全都免费| 麻豆成人在线观看| 岛国精品视频在线播放| 日韩亚洲国产中文字幕| jizzjizzjizz在线观看| 国产精品蜜臀| 91久久电影| 久久综合九色综合97婷婷| 91精品国产综合久久精品图片 | 国产精品不卡| 久久久99免费| 精品一区二区三区在线播放视频 | 日韩一区二区电影在线| 中文字幕日本三级| 欧美一区二区少妇| 91精品尤物| 精品一区二区三区影院在线午夜| 欧美日韩另类在线| 久久99久久99精品中文字幕| 成视频在线观看免费观看| 欧美日韩免费看片| 99国产精品99久久久久久粉嫩| 国产精品久久99| 国产亚洲精品久久| av一线二线| 亚洲男人av| 亚洲大片在线| 亚洲激情男女视频| 久久精品男人天堂| 日本特黄a级高清免费大片| 久久久久久一区二区三区四区别墅| 99国产精品久久久久久久| 夜夜嗨av一区二区三区中文字幕| 色阁综合伊人av| 国产黄色免费网| 自拍偷拍亚洲| 激情偷乱视频一区二区三区| 欧美日韩综合不卡| 亚洲精品人成电影网| 1024视频在线| 手机在线电影一区| 国产精品嫩草99a| 在线观看久久av| jlzzjlzz欧美| 国产精品一区二区三区av| 精品在线你懂的| 欧美猛男gaygay网站| 狂野欧美激情性xxxx| 在线午夜影院| 国产精品a久久久久| 亚洲午夜一区二区| 欧美俄罗斯乱妇| 可以在线观看的黄色| 国产欧美一区| 国产精品丝袜一区| 久久综合伊人77777| 翔田千里一区| 精品日韩免费| 国产精品欧美综合在线| 麻豆乱码国产一区二区三区| 午夜在线观看视频网站| 久久91成人| 国产精品美女久久久久久| 久久精品中文字幕电影| 四虎影院在线播放| 精品freesex老太交| 国产精品久久毛片a| 久久国产精品亚洲| 免费a级毛片在线观看| 成人综合一区| 亚洲欧美日韩国产另类专区| 欧美多人乱p欧美4p久久| caoporn国产精品免费视频| 国产精品麻豆久久| 午夜私人影院久久久久| 四虎激情影院| 乱馆动漫1~6集在线观看| 免费人成网站在线观看欧美高清| 欧美一区二区三区婷婷月色| 免费大秀视频在线播放| 亚洲国产精选| 成人91在线观看| 在线电影中文日韩| 日韩av免费观影| 午夜精品一区二区三区国产| 亚洲成在人线在线播放| 日韩黄色成人| 欧美日韩视频免费观看| 国产大片一区二区| 亚洲图片欧洲图片av| 亚洲啪啪aⅴ一区二区三区9色| 大片网站久久| 亚洲国产aⅴ成人精品无吗| 成人影院午夜久久影院| 韩日毛片在线观看| 国产一区二区免费在线| 亚洲人成在线一二| 青青草免费在线| 午夜天堂精品久久久久| 在线观看不卡一区| 美女免费黄视频网站| 中文字幕日韩高清在线| 欧美激情在线免费观看| 欧美精品久久久久a| 亚洲福利一区二区| 中文在线视频观看| 涩涩av在线| 国产伦精一区二区三区| 亚洲色图35p| 免费观看成年在线视频网站| 中文无码久久精品| 欧美亚洲综合另类| 天天操天天插| 亚洲小说图片| 天天色天天爱天天射综合| 国产一二三区精品视频| 日韩国产大片| 国产日韩欧美精品综合| 久久免费成人精品视频| 涩涩视频在线免费看| 不卡高清视频专区| 欧美精品在线看| 久草在线资源站资源站| 国产精品99久久久久久似苏梦涵| 中文字幕日韩欧美在线| 男女啪啪在线观看| 日日摸夜夜添夜夜添精品视频| 亚洲成人在线视频播放| 污网站在线观看视频| 欧美日韩少妇| 欧美一区二区在线观看| 日本一本视频| 天天综合一区| 91精品国产综合久久久久久久久久| 久草.com| 欧美在线亚洲| 日韩欧美激情一区| 爽爽视频在线观看| 国产亚洲激情| 日韩激情在线视频| av网站无病毒在线| 久久成人免费网| 日韩在线观看av| 超黄网站在线观看| 99re8在线精品视频免费播放| 久久久免费观看| 欧美日韩在线精品一区二区三区激情综合 | 精品国产免费人成在线观看| 性网站在线播放| 亚洲一区国产| 亚洲男人天堂2019| 超碰在线观看免费| 国产成人aaaa| 国语自产在线不卡| 久久久国产精品网站| 综合分类小说区另类春色亚洲小说欧美| 欧美成人免费视频a| 日韩一区二区三区精品视频第3页| 亚洲男同1069视频| 网站在线观看你懂的| 九九视频免费观看视频精品| 在线观看不卡一区| 色av一区二区三区| a黄色片在线观看| 一区二区三区视频免费观看 | 桃花视频大全不卡免费观看网站| 日韩理论电影中文字幕| 色丁香久综合在线久综合在线观看| free性欧美1819hd| 国内精品久久久久久久97牛牛 | 色偷偷噜噜噜亚洲男人| 国产在线精彩视频| 日本一区二区三区免费乱视频| 免费国产麻豆传| 首页亚洲中字| 欧美日韩高清在线| 黄色毛片在线观看| 韩国三级电影一区二区| 国产69精品久久久久9999| 亚洲一区二区三区久久久| 亚洲综合激情另类小说区| 99re热在线观看| 亚洲精一区二区三区| 伊人亚洲福利一区二区三区| 爱啪啪综合导航| 中日韩免费视频中文字幕| 日本一二三视频| 久久久久av| 国产视频精品xxxx| 岛国毛片av在线| 国产精品丝袜一区| jizz视频播放器| 国产主播一区| 中文在线不卡视频| 免费成人美女女| 亚洲国产一区二区视频| av在线影视| 老牛嫩草一区二区三区日本 | 色一色在线观看视频网站| 色喇叭免费久久综合网| 亚洲精品成人久久| caoprom在线| 国产精品久久久一本精品| jizzjizz免费| 欧美三级午夜理伦三级中文幕| 中文字幕成人在线| 成人全视频在线观看在线播放高清 | 亚洲无限av看| xxxxx性欧美特大| 一区二区三区久久| 超碰影院在线| 狠狠色狠狠色合久久伊人| www久久com| 青青草国产成人a∨下载安卓| 亚洲福利视频在线| 国产欧洲在线| 一区二区三区高清在线| 日本aa大片在线播放免费看| 蜜臀精品一区二区三区在线观看 | 亚洲一区二区在线免费观看视频| 激情校园亚洲图片| 久久久久久久波多野高潮日日| 欧美多人爱爱视频网站| 精品精品精品| 精品国产一区二区在线观看| gogo久久| 亚洲高清不卡在线观看| 在线视频国产三级| 成人综合在线网站| 特大巨黑人吊性xxx视频| 99精品热6080yy久久| 欧美国产日韩精品| 午夜先锋成人动漫在线| 亚洲国产精品久久久久秋霞蜜臀| 性国裸体高清亚洲| 欧美日韩国产限制| 在线激情免费视频| 亚洲欧洲日韩女同| 影音先锋在线影院| 成人福利视频网站| 菠萝蜜视频网址| 另类小说一区二区三区| 精品卡1卡2卡三卡免费网站|