国产av不卡一区二区_欧美xxxx做受欧美_成年人看的毛片_亚洲第一天堂在线观看_亚洲午夜精品久久久中文影院av_8x8ⅹ国产精品一区二区二区_久久精品国产sm调教网站演员_亚洲av综合色区无码一二三区_成人免费激情视频_国产九九九视频

Global EditionASIA 中文雙語Fran?ais
Opinion
Home / Opinion / Global Lens

AI-powered systems can improve medical care

By Iain E. Buchan | China Daily | Updated: 2025-06-11 06:54
Share
Share - WeChat
MA XUEJING/CHINA DAILY

As the world races to develop powerful artificial intelligence, it is also racing to tackle multiple public health challenges that need AI-powered solutions. These challenges include preparing for the next pandemic, tackling the relentless rise in infections that no longer respond to treatment with antimicrobial medicines, reversing the obesity epidemic, understanding and addressing the rising burden of mental health problems, and caring for people living longer but not healthier, often with multiple medical conditions.

In this context, an international network of innovative health systems could make rapid progress toward AI-powered public health.

The nature of health data available for training AI is challenging. Unlike data from cameras and sensors used for training AI to drive a car, the data from medical records for training AI to support healthcare does not present the full picture of people's health. Medical records focus on people who are already ill or have a medical condition. They are just snapshots of patients' conditions. There is so much missing and measurement error in healthcare data that training AI is like asking algorithms to look through holes in a fence, then through obscured glass, to see the true picture of patients' health journeys.

Earlier and fuller information on how people developed illnesses or became sick enough to seek medical help is lacking. This information is essential to finding ways to prevent an illness and support people's well-being. Given the rising costs of caring for aging populations, prevention is vital. Fortunately, AI is starting to tap into the rhythms of daily life — generating new data and user-interactions that can be used to support people's wellbeing and prevent illness.

At present, patient-driven apps and devices tend to focus on specific diseases or treatments, and the most serious patients with multiple conditions face a blizzard of different technologies. There is a need therefore to shift healthcare AI from the mindset of medical app-store to one of a healthcare skill-store for the digital twin of the patient. This shift is vital for achieving more predictive, preventive and personalized care.

For example, people prescribed medication for serious mental illness often face a risk of weight-gain, high blood pressure, diabetes, heart attacks and strokes. Effective "AI allies" for such patients would support not only their use of medication but also their daily choices of food, exercise, social interaction and other activities. This could mitigate the adverse effects of medicines and help improve their quality of life and daily functioning, including workplace productivity.

The AI allies need to learn from patients' interactive "digital twin" or "health avatar", reflecting much more of their health, social circumstances, habits and use (or not) of treatments than medical records do.

Realizing this AI-enabled improvement in preventive and personalized healthcare will need deep collaboration between patients, healthcare providers, healthcare payers (or social health system resource managers), health scientists and AI engineers. The data required to power patient-facing "health avatar" AI can also help improve health and social care providers' services.

Furthermore, data on individuals' journeys into needing care can help medical (and social) care systems to plan their resources and use them to treat the most vulnerable. This goal is sometimes called a "learning health system".

The University of Liverpool's Civic Health Innovation Labs and its health system partners are working to turn the learning systems theory into reality with a triple digital twin approach to the individual patient, the provider and the population.

For example, making the best use of medicines, the patient-level twin monitors medication experiences and enables individuals to track their own health and recognize early warning signs, fostering preventive self-management such as resuming an important medication or seeking help for one that seems to be causing problems. And while the provider-level twin helps the patient's doctor to review medications by pulling together the key information from multiple records in an easy-to-read summary alongside prescribing guidance, the population-level twin identifies the patients who are most likely to benefit from a medication review and offers them fast-track access.

This learning is important because medication-caused harm (from death to brain fog affecting work) is common, the cost of medicines is a major financial pressure on health systems, and very little is known about how patients use medicines — it is estimated that between one-third and half of the medicines are not used as prescribed.

Just as AI such as DeepSeek feed from the size and diversity of training data and users, the ideal "AI allies" for patients, healthcare providers and population health managers need to learn from a global grid of learning health systems. From minimizing antimicrobial resistance to maximizing preventive healthcare in populations living longer with more medical conditions and relatively less resources to care for them — the major public health problems are pressing and don't have national borders. Given the challenges the world faces today, health systems worldwide need to join forces to optimize AI for human health.

The author is W.H. Duncan chair in Public Health Systems and associate pro vice-chancellor for Innovation, University of Liverpool, UK. The views don't necessarily reflect those of China Daily.

If you have a specific expertise, or would like to share your thought about our stories, then send us your writings at opinion@chinadaily.com.cn, and comment@chinadaily.com.cn.

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
欧美黄色大片在线观看| 蜜芽视频在线观看| 久久亚洲精品小早川怜子66| 国产成人自拍网| 欧美一区亚洲| 91成人噜噜噜在线播放| 高h视频在线播放| 桃乃木香奈av在线| 一个人看的www在线免费视频| 欧美日韩日日夜夜| 亚洲天堂av老司机| 国产黄色精品网站| 久久99精品视频| 欧美福利在线| 天天做综合网| 欧美与亚洲与日本直播| 国产精品久久久久久福利| 久久精品无码一区二区日韩av| 欧美xxxx性猛交bbbb| 欧美成人免费全部| 日韩激情视频在线| 欧美日韩精品久久久| 91国偷自产一区二区三区观看| 中文字幕一区二区视频| 成人国产一区二区三区精品| 日韩国产欧美三级| 亚洲欧美日韩在线观看a三区| 亚洲人成小说| jizzjizzwww| 亚洲精品自产拍在线观看app| 色偷偷偷综合中文字幕;dd| 91黄视频在线| 免费人成黄页网站在线一区二区 | 国产在线精品视频| 亚洲三级免费| 日韩在线第七页| 999在线精品| heyzo在线播放| 久久精品一区中文字幕| 4hu四虎永久在线影院成人| 一区二区三区日韩| 不卡的av在线| 午夜一区二区三区不卡视频| 亚洲国产mv| 免费特级黄毛片| www.噜噜色.com| 夜先锋av资源| 欧美午夜性春猛xxxx| 精品国产欧美一区二区五十路 | 色av吧综合网| 久久综合五月天| 欧美高清视频在线播放| 亚洲国产欧美一区| 欧美日韩视频免费播放| 亚洲欧美在线视频观看| 亚洲精品v日韩精品| www国产精品av| 国产河南妇女毛片精品久久久| 国产一区欧美二区| 国产福利一区二区三区在线视频| 成人午夜免费av| 久久精品观看| 国产精品v欧美精品v日本精品动漫| 五月天亚洲一区| 欧美理论在线播放| 久久a爱视频| 久久99久久99精品免观看粉嫩| 日韩欧美一区二区视频| 精品奇米国产一区二区三区| 欧美视频13p| 亚洲天堂免费看| 亚洲综合色视频| 日韩欧美在线视频日韩欧美在线视频 | 亚洲福利视频在线| 欧美无乱码久久久免费午夜一区 | 精品高清在线| 中文字幕免费精品| 台湾佬综合网| h文在线观看免费| 天天操夜夜添| 国产黄色一级电影| a天堂在线观看| 福利电影导航| 蜜桃视频在线观看视频| 国产在线观看免费麻豆| 视频一区二区在线播放| 男女午夜网站| 天天摸天天做天天爽| 日本一二区视频| av网址观看| 波多野结衣av在线播放| 成人性爱视频在线观看| 欧美孕妇孕交| 人交獸av完整版在线观看| 色av一区二区| 久久久精品日韩| 精品一区二区成人精品| 成人涩涩免费视频| 欧美极品少妇xxxxⅹ高跟鞋 | 国产精品一二三| 欧美高清在线一区二区| 成人av网站大全| 日本一区免费视频| 欧美午夜片欧美片在线观看| 欧美剧情电影在线观看完整版免费励志电影 | 欧美一区2区视频在线观看| 欧美性色黄大片手机版| www.日本不卡| 韩国精品福利一区二区三区| 日韩欧美高清在线播放| 日本韩国在线视频爽| 狠狠干狠狠插| 福利电影在线| 在线免费av观看| 人交獸av完整版在线观看| 亚洲精品v亚洲精品v日韩精品| 精品免费视频一卡2卡三卡4卡不卡| 国产一区在线视频观看| 天天色天天射天天干| 日韩午夜在线观看视频| 最新日韩中文字幕| 中文字幕国产欧美| wwwwww99| 成人软件网18免费视频| 激情小说 在线视频| 日本一本在线免费福利| 国产精成人品2018| 亚洲成人看片| 日韩丝袜视频| 国产午夜精品一区二区三区欧美| 亚洲私人影院| 亚洲激情二区| 成人黄色在线视频| 亚洲黄色性网站| 欧美一区2区视频在线观看| 久久久www成人免费精品张筱雨| 九九九九热精品免费视频| 亚洲社区在线| sm久久捆绑调教精品一区| 国产精品2023| 午夜一区二区三区不卡视频| 国产色产综合色产在线视频| 欧洲一区二区三区免费视频| 中文字幕精品网| 久久精品福利视频| 国产精品亚洲色图| 中文字幕在线影视资源| 伊人久久国产| 欧美精品尤物在线观看| 久久99精品国产麻豆不卡| 亚洲色欲色欲www在线观看| 日韩欧美电影一区| 97精品在线视频| 亚洲成人黄色小说| 免费大秀视频在线播放| 久久99精品国产自在现线小黄鸭| 黄网站免费观看| av中文字幕电影在线看| 蜜桃精品wwwmitaows| 日本福利片在线| 国产网站免费看| 一级片免费在线| 欧美最猛黑人xxxx黑人猛交黄| www.先锋影音av| 嫩草精品影院| 日韩国产91| 亚洲成人激情社区| 91亚洲成人| 成人黄色av电影| 欧美亚洲一区二区在线观看| 欧美人与性动交a欧美精品| jizzjizzjizzjizzjizzjizzjizz| 国产精品剧情| 神马电影久久| 欧美另类亚洲| 欧美中文字幕一二三区视频| 黄一区二区三区| 亚洲高清中文字幕| 中文欧美在线视频| 色在线视频播放| 超碰免费在线播放| 亚洲人成网亚洲欧洲无码| 国产自产2019最新不卡| 日韩欧美一区二区三区久久| 自拍亚洲一区欧美另类| chinesespank调教| 亚洲福利影院| 亚洲欧美伊人| 中文成人综合网| 亚洲国产成人精品一区二区 | 色综合久久88| 免费网站www在线观看| 91超碰碰碰碰久久久久久综合| 在线成人h网| 最新国产の精品合集bt伙计| 精品国产一区二区三区久久影院 | 亚洲天堂精品在线观看| 亚洲深夜福利在线| eeuss影院www影院入口| 国产激情视频在线看| 欧美三级黄美女| 欧美韩日一区二区三区| 亚洲欧美一区二区激情| jizz中国免费| 中老年在线免费视频| 亚洲视频狠狠| 一区二区三区四区在线| 久久精品精品电影网| 视频免费在线看| 国产美女精品视频免费播放软件| 麻豆精品蜜桃视频网站| 欧洲色大大久久| 中文字幕色站| 91精彩在线视频| 麻豆tv免费在线观看| 国产区精品区| 国产亚洲va综合人人澡精品| 亚洲大胆人体av| 免费看大片爽| 色呦呦久久久| 欧美日韩99| 亚洲永久免费av| 久久久久日韩精品久久久男男| 黄色影片网址| 新片速递亚洲合集欧美合集| 免费在线播放第一区高清av| 欧美三级欧美成人高清www| 7777免费精品视频| www.中文字幕久久久| 欧美日韩在线二区| 国产精品亲子伦对白| 中文字幕精品www乱入免费视频| 国产在线黄色片| 8x国产一区二区三区精品推荐| 成人免费毛片片v| 亚洲黄在线观看| v888av成人| 国产精品毛片无码| 国产精品一区二区你懂的| 欧美成人精品福利| 999sesese| 国内不卡的一区二区三区中文字幕 | 欧美78videosex性欧美| 亚洲精品裸体| 图片区小说区国产精品视频| 97视频国产在线| 调教视频免费在线观看| 999成人精品视频线3| 黄色av网址在线免费观看| 日韩欧美在线精品| 中文字幕免费不卡| 久久在线视频在线| 欧洲成人av| 999久久久91| 亚洲最大色网站| 小说区乱图片区| 青草视频在线免费直播| 国产一区91| 欧美精品乱码久久久久久按摩 | 红桃成人av在线播放| 国产精品久久久久精k8 | av在线日韩| 国产精品一卡二卡在线观看| 日韩精品在线观看视频| 情趣视频网站在线免费观看| 成人嫩草影院| 亚洲成年人网站在线观看| 亚洲永久免费网站| 欧美aa在线观看| 韩国视频一区二区| 日韩精品视频在线免费观看| 欧美高潮视频| 91亚洲国产高清| 精品国产91乱高清在线观看| 国产娇喘精品一区二区三区图片| 国产一区二区三区朝在线观看| 高清国产一区二区三区| 亚洲国产日韩精品| 日韩av影音先锋| 91p九色成人| 91香蕉视频mp4| 欧美区在线播放| 五月婷婷视频在线观看| 丝袜美腿亚洲一区| 亚洲第一色中文字幕| 国外男同性恋在线看| 久久一本综合| 欧洲精品一区二区三区在线观看| 操女生的网站| 欧美xxxx在线| 亚洲在线视频网站| 国产成人精品自线拍| 欧美h版在线观看| 国产一区二区三区在线看麻豆| 日韩精品在线免费| 性欧美精品孕妇| 亚洲视频一二| 日韩天堂在线观看| 在线播放国产区| 亚洲最大黄网| 欧美日韩高清一区| 国产.com| 欧美在线观看视频一区| 亚洲成人av一区| 国产精品国产国产aⅴ| 亚洲小说春色综合另类电影| 尤物视频在线视频| 亚洲97在线观看| 日本欧美电影在线观看| 美女性感视频久久| 亚洲天堂2020| 国产午夜精品一区理论片飘花 | 中文字幕人成人乱码| 欧美日韩国产一级二级| 亚洲精品一区二区| 欧美一区视频| 欧美大片免费久久精品三p| 中文字幕网在线| 亚洲精品日韩久久| 亚洲国产日韩精品在线| 国产免费av高清在线| 国产精品一区二区av交换| 欧美日韩久久久久| 亚洲无线看天堂av| 91精品蜜臀一区二区三区在线| 欧美午夜精品久久久| jizz老师| 在线视频亚洲专区| 91黄色免费观看| 日本夜爽爽一二区| 最新日韩av| 亚洲欧美精品在线| av在线网址观看| 国产高清亚洲一区| 97视频在线观看播放| 久久免费资源| 亚洲视频香蕉人妖| 有色视频在线观看| 国产欧美日韩免费观看| 欧美伦理视频网站| 青青草免费观看免费视频在线| 日韩激情一区二区| www.欧美三级电影.com| 成人影院在线视频| 国产亚洲一区二区三区四区| 性欧美高清视频| 久久夜色精品国产噜噜av小说| 成人高清免费在线| 日韩视频免费| 亚洲视频日韩精品| 4438x成人网全国最大| 高清av电影在线观看| 久久机这里只有精品| 欧美高清自拍一区| 国产69精品久久| 亚洲精品你懂的| h视频在线观看免费完整版| 羞羞答答成人影院www| 精品区一区二区| 国产在线1区| 99国内精品久久| 国产视频xxxx| 欧美日韩一二三四| 日韩一区二区三区在线视频| 91网在线播放| 成人免费的视频| 麻豆国产高清在线播放| 国产精品欧美三级在线观看| 日韩一区二区中文字幕| av二区在线| youjizz国产精品| 欧美另类极品videosbest视频| 欧美aaaaa级| 777xxx欧美| 免费大片在线观看www| 99久久综合国产精品| 精品免费视频一卡2卡三卡4卡不卡| 最新国产一区| 日韩精品一区二区三区在线播放| 乱人伦中文视频在线| 久久久99久久精品欧美| 在线观看天堂| 自拍偷拍欧美| 在线免费看av不卡| 姬川优奈av一区二区在线电影| 亚洲综合激情小说| 天堂视频福利| 国产原创一区二区三区| 一区二区三区小视频| 在线观看欧美理论a影院| 精品国产乱码久久久久久久| 日韩一区二区三区视频在线| 永久在线免费观看| 久久黄色级2电影| 男人操女人在线观看| 美女少妇全过程你懂的久久| 欧美va天堂va视频va在线| 第四色日韩影片| 亚洲另类中文字| 97视频在线观看成人|